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Preface

Bayesian statistical methods are becoming increasingly popular across all branches of science.
With the rapid development of statistical software, Bayesian computations are now accessible
to researchers across various domains. These methods are routinely used by practitioners in
both industry and academia. However, with the growing availability of software and packages,
the fundamental understanding of Bayesian estimation is sometimes compromised.

In this document, we aim to bridge that gap by offering a clear understanding of the Bayesian
principles through practical examples and case studies. By simulating data and comparing
Bayesian estimates with likelihood-based estimates, we focus on the core concept of bias-
variance decomposition of the mean square error (MSE) when evaluating estimators.

This work is the outcome of a series of lectures delivered by the author, Amiya Ranjan
Bhowmick, during the summer vacation of 2018 at the Institute of Chemical Technology
(ICT), Mumbai. This document would be incomplete without acknowledging the influence
of two exceptional books: Statistical Inference (Casella and Berger 2002) and All of
Statistics (Wasserman 2004). These texts provided the foundation for much of the material
discussed, and it would have been impossible to develop this work without their insights. We
studied many examples and exercises from these books and have put our understanding into
words here. And, certainly mistake is a part of our life. We would be grateful if the mistakes
are informed to us.
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1 Introduction

Bayesian statistics has emerged as a powerful tool in the realm of statistical analysis, provid-
ing a flexible framework for making inferences under uncertainty. The foundation of Bayesian
methods dates back to the 18th century when Reverend Thomas Bayes proposed a theorem for
updating beliefs with new evidence. This approach offers a probabilistic paradigm that allows
the incorporation of prior knowledge, leading to more informed decision-making.

Bayesian analysis, rooted in Bayesian statistical methods, aims to make inferences about
parameters. Parameters are the quantities we seek to estimate or infer from our data.
They represent the underlying characteristics or properties of the system or process under
investigation. For instance, in a model predicting the probability of species extinction, the
parameter of interest might be the actual likelihood of such an extinction event occurring.
Mathematically, the parameter(s) is denoted by 𝜃.
At the heart of Bayesian analysis are three fundamental components: prior, likelihood, and
posterior. These elements work together to form a cohesive system that informs probabilistic
reasoning. Let us understand the what exactly these terms are in Bayesian statistics;

Prior

The prior distribution or simply prior is a probability distribution that represents our ini-
tial beliefs or knowledge about the parameters before observing any data. It reflects what
we think the values of the parameters could be based on prior experience, expert knowl-
edge, or sometimes, a deliberate choice to remain neutral. Priors can take many forms, from
non-informative or vague, which show that we have little or no prior knowledge about the
parameter, to informative, which incorporate strong prior knowledge. In this book we denote
the prior distribution of parameter 𝜃 by 𝜋(𝜃).

Likelihood

The likelihood function is derived from the data and describes the probability of the observed
data given the model parameters. It reflects how well different parameter values explain the
observed data. In Bayesian inference, the likelihood is combined with the prior to update our
beliefs about the parameters.
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Mathematically, if we denote the parameter of interest by 𝜃 and the observed data by 𝑦, the
likelihood function is given by 𝑝(𝑦|𝜃), which measures the plausibility of 𝜃 given the data.

Posterior

The posterior distribution denoted by 𝑝(𝜃|𝑦) is the result of updating the prior with the
observed data through the likelihood. It is the core output of a Bayesian analysis and represents
our updated beliefs about the parameter(s) after accounting for the data.

Using Bayes’ Theorem, the posterior is expressed as:

𝑝(𝜃|𝑦) = 𝑝(𝑦|𝜃)𝜋(𝜃)
𝑝(𝑦) ,

where 𝑝(𝜃|𝑦) is the posterior, 𝑝(𝑦|𝜃) is likelihood, 𝜋(𝜃) is the prior, and 𝑝(𝑦) is the marginal
likelihood, which normalize the posterior distribution. The posterior reflects both the infor-
mation contained in the prior and the evidence from the data, thus offering a balanced view
of parameter uncertainty.

Improper prior

In some cases, a prior distribution 𝜋(𝜃) may not integrate to one, which is referred to as an
improper prior:

∫
∞

−∞
𝜋(𝜃) 𝑑𝜃 = ∞

These priors are often used when we want a non-informative or vague prior, such as in situa-
tions where no clear prior knowledge exists. Improper priors can sometimes lead to improper
posteriors, but when handled correctly, they can still be useful, particularly when the likelihood
is highly informative.

For example, a flat prior over an infinite range is an improper prior because it doesn’t integrate
to a finite value. However, it is often employed when the intention is to let the data dominate
the inference. Let us understand it through one example;

A common example of an improper prior is the uniform prior over the entire real line:

𝜋(𝜃) = 1

for all 𝜃 ∈ ℝ. This prior is “improper” because:

∫
∞

−∞
𝜋(𝜃) 𝑑𝜃 = ∫

∞

−∞
1 𝑑𝜃 = ∞.
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For the posterior distribution to be proper, the integral of the posterior distribution over all
possible values of 𝜃 must be finite and equal to one:

∫
∞

−∞
𝜋(𝜃|𝑦) 𝑑𝜃 = 1.

If the likelihood function 𝑃(𝑦|𝜃) is such that it ensures this condition, then the improper prior
can be used effectively.

Conjugate prior

Given a likelihood function 𝑝(𝑦 ∣ 𝜃), if the posterior distribution 𝑝(𝜃 ∣ 𝑦) belongs to the same
family of probability distributions as the prior distribution 𝑝(𝜃), then the prior and posterior
are referred to as conjugate distributions with respect to that likelihood function. In this case,
the prior is called a conjugate prior for the likelihood function 𝑝(𝑦 ∣ 𝜃).
In this introductory chapter, we have explored the foundational concepts of Bayesian statistics,
including the role of parameters, prior distributions, likelihoods, and the posterior distribution.
We have also introduced the idea of improper and conjugate priors. With these core principles
in mind, we are now ready to move from theory to practice.
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2 Illustrative Examples in practice

In this chapter, we will explore five commonly used examples in Bayesian inference. Each
example is designed to show, step-by-step, how to calculate the posterior distribution, find
the Bayesian estimate of the parameter, and compute the Mean Square Error (MSE) of the
estimate.

These examples have been selected to clearly demonstrate how Bayesian methods work in prac-
tice for teaching purposes. By following these examples, one can gain a better understanding
of how to apply Bayesian techniques and assess the accuracy of the estimates. The detailed
calculations and used codes are included to make learning easier and more practical.

2.1 Example - I (Poisson rate parameter with gamma prior)

Let 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 be a random sample of size 𝑛 from a population following Poisson(𝜆) distri-
bution. Suppose 𝜆 have a gamma(𝛼, 𝛽) distribution, which is the conjugate family for Poisson.
So, the statistical model has the following hierarchy:

𝑋𝑖|𝜆 ∼ Poisson(𝜆), 𝑖 = 1, 2, ⋯ , 𝑛,
𝜆 ∼ gamma(𝛼, 𝛽).

Based on the observed sample, we are interested to estimate the mean of the population, that
is the value of 𝜆. The prior distribution of 𝜆, 𝜋(𝜆), is given by

𝜋(𝜆) = 𝜆𝛼−1𝑒− 𝜆
𝛽

Γ(𝛼)𝛽𝛼 , 𝜆 > 0,

where 𝛼 and 𝛽 are positive constants. First, we shall obtain the posterior distribution of 𝜆.
If there were no prior information available about the parameter 𝜆, then we could use the
sample mean 𝑋 to estimate it. However, the exact sampling distribution of 𝑋 is not known
in this case. Therefore, we begin with a statistic 𝑌 = ∑𝑛

𝑖=1 𝑋𝑖, whose sampling distribution
is known to be Poisson(𝑛𝜆) (denoted by 𝑓(𝑦|𝜆)). The posterior distribution, the conditional
distribution of 𝜆 given the sample, 𝑋1, 𝑋2, ⋯ , 𝑋𝑛, that is, given 𝑌 = 𝑦, is
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𝜋(𝜆|𝑦) = 𝑓(𝑦|𝜆)𝜋(𝜆)
𝑚(𝑦) , (2.1)

where 𝑚(𝑦) is the marginal distribution of 𝑌 and can be calculated as follows;

𝑚(𝑦) = ∫
∞

0
𝑓(𝑦|𝜆)𝜋(𝜆)d𝜆

= ∫
∞

0

𝑒−𝑛𝜆(𝑛𝜆)𝑦

𝑦! ⋅ 𝜆𝛼−1𝑒− 𝜆
𝛽

Γ(𝛼)𝛽𝛼 d𝜆

= 𝑛𝑦

𝑦!Γ(𝛼)𝛽𝛼 ∫
∞

0
𝑒−𝜆(𝑛+ 1

𝛽 )𝜆𝑦+𝛼−1d𝜆

= 𝑛𝑦Γ(𝑦 + 𝛼)
𝑦!Γ(𝛼)𝛽𝛼 (𝑦 + 1

𝛽)𝑦+𝛼 ∫
∞

0

𝑒−𝜆(𝑛+ 1
𝛽 )𝜆𝑦+𝛼−1 (𝑛 + 1

𝛽)𝑦+𝛼

Γ(𝑦 + 𝛼) d𝜆

= 𝑛𝑦Γ(𝑦 + 𝛼)
𝑦!Γ(𝛼)𝛽𝛼 (𝑛 + 1

𝛽)𝑦+𝛼 , 𝑦 = 0, 1, 2, ⋯ .

In the above, the integrand is the kernel of the gamma(𝑦 + 𝛼, (𝑛 + 1
𝛽)−1) density function,

hence integrated out to be 1. Now, the posterior density 𝜋(𝜆|𝑦) is given by

𝜋(𝜆|𝑦) = 𝑒−𝑛𝜆(𝑛𝜆)𝑦

𝑦! ⋅ 𝜆𝛼−1𝑒− 𝜆
𝛽

Γ(𝛼)𝛽𝛼 ⋅
𝑦!Γ(𝛼)𝛽𝛼 (𝑛 + 1

𝛽)𝑦+𝛼

𝑛𝑦Γ(𝑦 + 𝛼)

=
(𝑛 + 1

𝛽)𝑦+𝛼 𝑒−𝜆(𝑛+ 1
𝛽 )𝜆𝑦+𝛼−1

Γ(𝑦 + 𝛼) , 0 < 𝜆 < ∞.

Hence, as expected, the posterior distribution of 𝜆,

𝜆|𝑦 ∼ gamma(𝑦 + 𝛼, (𝑛 + 1
𝛽 )

−1
) .

It also verifies the claim that the gamma(𝛼,𝛽) is the conjugate family for Poisson. A closure
look in the above calculations reveals that the steps can be heavily reduced, in fact the explicit
expression for 𝑚(𝑦) is not at all required. Since, it does not depend of 𝜆, it is a constant, that
makes the integral ∫∞

0 𝜋(𝜆|𝑦)d𝜆 to be equal to 1, so that it becomes a valid probability density
function. Thus, appearance of the posterior density in the integrand of the marginal is not a
magic. We shall use this posterior distribution of 𝜆 to make statements about the parameter
𝜆. The mean of the posterior can be used as a point estimate of 𝜆. So, the Bayesian estimator
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of 𝜆 (call it �̂�𝐵) is given by 𝐸(𝜆|𝑌 ). Because of the gamma density, we avoid the computation
of the integral and directly write as:

�̂�𝐵 = 𝑦 + 𝛼
𝑛 + 1

𝛽
= 𝛽(𝑦 + 𝛼)

𝑛𝛽 + 1 .

Let us investigate the structure of the Bayesian estimate of 𝜆. If no data were available, we
are forced to use the information from the prior distribution (only). 𝜋(𝜆) has the mean 𝛼𝛽,
which would be our best estimate of 𝜆. If no prior information were available, we would use
𝑌 /𝑛 (sample mean 𝑋) to estimate 𝜆 and draw the conclusion based on the sample values only.
Now, the beautiful part is that the Bayesian estimator combines all of these information (if
available). We can write �̂�𝐵 in the following way.

�̂�𝐵 = ( 𝑛𝛽
𝑛𝛽 + 1) (𝑌

𝑛 ) + ( 1
𝑛𝛽 + 1) (𝛼𝛽) .

Thus �̂�𝐵 is a linear combination of the prior mean and the sample mean. The weights are
determined by the values of 𝛼, 𝛽 and 𝑛.
Suppose that we increase the sample size such that 𝑛 → ∞. Then 𝑛𝛽

𝑛𝛽+1 → 1 and 1
𝑛𝛽+1 → 0,

and �̂�𝐵 → 𝑋. The idea is that as we increase the sample size, the data histogram closely
approximates the population distribution itself. As if we have got enough knowledge about
the population itself (because of a large number of observations). Hence, the prior information
becomes less relevant and the value of the sample mean dominates the Bayesian estimate of 𝜆.
When the size of the sample is small, then it is wise to utilize the prior information about the
population parameter. Hence, the term ( 𝛼𝛽

𝑛𝛽+1) contributes significantly in the final estimate.
By weak law of large numbers 𝑋 → 𝜆 in probability as 𝑛 → ∞, so �̂�𝐵 → 𝜃 in probability,
proving that �̂�𝐵 is consistent estimator for 𝜆. Another interesting point is that, for any finite
𝑛, �̂�𝐵 is a biased estimator of 𝜆, with Bias𝜆(�̂�𝐵) = 𝛼𝛽−𝜆

𝑛𝛽+1 → 0 as 𝑛 → ∞. �̂�𝐵 is asymptotically
unbiased.

We end up with two estimators for the parameter 𝜆, viz. Bayesian estimate, �̂�𝐵 and Maximum
likelihood estimator �̂� = 𝑋. It is natural to ask which estimator should we prefer? The
efficiency of an estimator is computed by the Mean Square Error (MSE) which measures the
average squared difference between the estimator and the parameter. In the present situation,
the MSE of �̂� is

E𝜆(�̂� − 𝜆)2 = Var𝜆(𝑋) = 𝜆
𝑛.

Since, 𝑋 is an unbiased estimator of 𝜆, the MSE of 𝑋 is equal to its variance. Now, given
𝑌 = ∑𝑛

𝑖=1 𝑋𝑖, the MSE of the Bayesian estimator of 𝜆, �̂�𝐵 = 𝛽(𝑌 +𝛼)
𝑛𝛽+1 , is
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E𝜆(�̂�𝐵 − 𝜆)2 = Var𝜆�̂�𝐵 + (Bias𝜆�̂�𝐵)2

= Var𝜆 (𝛽(𝑌 + 𝛼)
𝑛𝛽 + 1 ) + (E𝜆 (𝛽(𝑌 + 𝛼)

𝑛𝛽 + 1 ) − 𝜆)
2

= 𝛽2𝑛𝜆
(𝑛𝛽 + 1)2 + (𝛼𝛽 − 𝜆)2

(𝑛𝛽 + 1)2 .

For fixed 𝑛, the above quantity will be minimum if 𝛼𝛽 = 𝜆, that is the prior mean is equal
to the true value. However, in general, MSE is a function of the parameter. So, it is highly
unlikely that we would end up with a single estimator which is the best for all parameter
values. In general the MSEs of two estimators cross each other. This demonstrates that one
estimator is better with respect to another estimator in only a portion of the parameter space.
Now let us delve deep further in comparing the above two estimators. If 𝜆 = 𝛼𝛽, then for
large 𝑛,

MSE𝜆(�̂�𝐵) = 𝛽2𝑛𝜆
(𝑛𝛽 + 1)2 = 𝛽2𝑛𝜆

𝑛2𝛽2 (1 + 1
𝑛𝛽)2 ≈ 𝜆

𝑛.

Thus, if the prior is chosen in a such way (choice of 𝛼 and 𝛽) so that the prior mean is close
to the true value, then both the estimators have same variance approximately, for large 𝑛.
This observation is depicted in Figure 2.1. We consider the values of 𝛼 and 𝛽 to be 4 and 1

2 ,
respectively, so that the prior mean is 𝛼𝛽 = 2. It is clear from the figure that if prior mean is
close to the true value, then �̂�𝐵 performs better than �̂�. If the prior mean is much away from
the true value, then �̂� performs better than �̂�𝐵. However, for large sample size (𝑛 → ∞) both
the estimators have same MSE.

We have seen that the posterior mean is a linear combination of prior mean and the sample
mean. Basically, the Bayesian estimate lies between the sample mean and prior mean. That is,
the linear combination is in fact a convex combination. This can also be better visualized if we
plot the three distributions in a single plot window, viz. the data histogram, prior distribution,
posterior distribution (Figure 2.2).

R Code for Figure 2.1

par(mfrow=c(1,3))
alpha = 4; beta = 1/2;
lambda = seq(0.1, 5, length.out = 50)
n_vals = c(10, 25, 50)
for(n in n_vals){
mse_lambda_cap = lambda/n
mse_lambdaB_cap = (beta^2*n*lambda + (alpha*beta-lambda)^2)/(n*beta+1)^2
plot(lambda, mse_lambda_cap, col = "red", lwd=3, lty=1, type="l",

xlab = expression(lambda), cex.lab = 1.2, ylab = "MSE", main = paste("n = ", n), cex.main = 1.5, cex.lab = 1.5)
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Figure 2.1: MSE of �̂� = 𝑋 and �̂�𝐵 at different values of 𝜆 for different choices of the sample
size, 𝑛. The prior distribution of 𝜆 is chosen as gamma(4, 1

2). The prior mean is
2 and is indicated by a black dot. For small sample size 𝑛 = 10, the MSE𝜆(�̂�𝐵)
is lower than the MSE𝜆(�̂�) for all true values of 𝜆 in a neighborhood of 2. As
𝜆 increases, after a certain value, MSE𝜆(�̂�) crosses the MSE of �̂�. The same is
observed for very small values of 𝜆. However, for large 𝑛 values, the MSE of
both the estimators merges, essentially the prior information becomes redundant
(𝑛 = 50).

lines(lambda, mse_lambdaB_cap, col = "blue", lwd=3, lty=1)
legend = c( expression(paste("MSE"[lambda], (hat(lambda)))),

expression(paste("MSE"[lambda], (hat(lambda)[B]))))
legend("topleft",legend = legend, lwd = c(3,3),col = c("red","blue"),

lty = c(1,1), cex = 1, bty = "n")
points(alpha*beta, 0, lwd=2, pch=20, cex=2)

}

R Code for Figure 2.2

par(mfrow=c(1,1))

# sampling distribution of sample mean
n = 5 # sample size
lambda = 2 # true mean values
set.seed(123) # reporducibility of simualtion
rep = 100 # number of replication
mean_vals = numeric(length = rep)
for(i in 1:rep){

mean_vals[i] = mean(rpois(n = n, lambda = lambda))
}
plot(density(mean_vals), lwd=3, col = "magenta", xlim = c(0, 11), ylim =c(0,.8), main = "",
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Figure 2.2: A sample of size 𝑛 = 5 were simulated from the Poisson distribution with parameter
𝜆 = 2 and the sample mean has been computed. The process has been replicated
100 times to obtain the sampling distribution of the sample meanand approximated
by a kernel density estimator (magenta colour). The maximum likelihood estimate
of 𝜆 is denoted by magenta coloured ‘*’. Similarly exact prior density and exact
posterior density functions are plotted using blue and red colour, respectively.
Similarly the prior mean and posterior mean values are also marked. The depicted
picture clearly verifies the theoretical calculations performed in the text.

13



xlab = expression(lambda), cex.lab = 1.4, lty = 2)

# Prior density of lambda
alpha = 18; beta = 1/3 # hyperparameters
prior_density = function(x){ # prior density

exp(-x/beta)*x^(alpha-1)/(beta^alpha * gamma(alpha))
}
curve(prior_density(x), 0, 13, col = "red", lwd=3, add = TRUE, lty = 2)
points(alpha*beta, 0, lwd=2, col ="red", pch = "*", cex=2)

y = sum(rpois(n = n, lambda = lambda)) # sufficient statistic
posterior_density = function(x){ # posterior density

(n+1/beta)^(y+alpha)*exp(-x*(n+1/beta))*x^(y+alpha-1)/gamma(y+alpha)
}
curve(posterior_density(x), col = "blue", lwd=3, add = TRUE, lty = 2)
points(beta*(y+alpha)/(n*beta + 1),0, lwd=2, col ="blue", pch = "*", cex=2) # posterior mean
points(y/n, 0, lwd=2, col ="magenta", pch = "*", cex=2)
legend(8,0.8, c(expression(f[bar(X)](x)), expression(pi(lambda)),

expression(paste(pi,"(",lambda, "|", y,")" ))),
lwd=rep(3,3), col = c("magenta", "red", "blue"), bty="n", cex = 1.3, lty = rep(2, 3))

2.2 Example - II (Normal prior for normal mean)

Suppose we observe a sample of size 1, 𝑋 ∼ 𝒩(𝜃, 𝜎2) and suppose that the prior distribution
of 𝜃 is 𝒩(𝜇, 𝜏2). We assume that the quantities, 𝜎2, 𝜇 and 𝜏2 are all known. We are interested
to obtain the posterior distribution of 𝜃. The prior distribution is given as;

𝜋(𝜃) = 1
𝜏
√

2𝜋𝑒− (𝜃−𝜇)2
2𝜏2 , −∞ < 𝜇, 𝜃 < ∞, 0 < 𝜏 < ∞.

The posterior density function of 𝜃 is given as follows;

𝜋(𝜃|𝑥) = 𝑓(𝑥|𝜃)𝜋(𝜃)
∫∞
−∞ 𝑓(𝑥|𝜃)𝜋(𝜃)d𝜃

=
1

𝜎𝜏(
√

2𝜋)2 exp{−1
2 [(𝑥−𝜃

𝜎 )2 + (𝜃−𝜇
𝜏 )2]}

∫∞
−∞ 𝑓(𝑥|𝜃)𝜋(𝜃)d𝜃

.

The exponent can be expressed as
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𝜎2 + 𝜏2

𝜎2𝜏2 ⋅ [(𝜃 − 𝑥𝜏2 + 𝜇𝜎2

𝜎2 + 𝜏2 )
2

+ 𝜏2𝑥2 + 𝜇2𝜎2

𝜎2 + 𝜏2 − (𝑥𝜏2 + 𝜇2𝜎2

𝜎2 + 𝜏2 )
2
] .

Note that, all the terms except containing the expression of 𝜃 will be cancelled with the
denominator, resulting the posterior density of 𝜃 given as follows;

𝜋(𝜃|𝑥) =
√

𝜎2 + 𝜏2

𝜎𝜏
√

2𝜋 exp[−𝜎2 + 𝜏2

2𝜎2𝜏2 (𝜃 − 𝑥𝜏2 + 𝜇𝜎2

𝜎2 + 𝜏2 )
2
] .

The posterior distribution of 𝜃 is normal, showing that the normal family is its own conjugate
when indexed by the mean (𝜃). The posterior mean and variance of 𝜃 are as follows;

E(𝜃|𝑥) = 𝑥𝜏2 + 𝜇𝜎2

𝜎2 + 𝜏2 , and Var(𝜃|𝑥) = 𝜎2𝜏2

𝜎2 + 𝜏2 .

As discussed earlier, E(𝜃|𝑥) is a point of estimate of 𝜃, thus the Bayesian estimator of 𝜃 based
on a single sample is given by

̂𝜃𝐵 = 𝑋𝜏2 + 𝜇𝜎2

𝜎2 + 𝜏2 = ( 𝜏2

𝜎2 + 𝜏2 ) 𝑋 + ( 𝜎2

𝜎2 + 𝜏2 ) 𝜇.

Again, the Bayesian estimate of 𝜃 is a linear combination of the prior mean and the sample
value (which is in fact the estimate of 𝜃, as the size of the sample is 1). We shall treat this
problem based on a sample of size 𝑛 and obtain the Bayesian estimator of 𝜃 using it. A
tedious calculation is required to obtain the posterior distribution. However, that will help us
to obtain the the distribution of 𝜃|𝑋 easily. Suppose that we draw a sample 𝑋1, 𝑋2, ⋯ , 𝑋𝑛
of size 𝑛 from 𝒩(𝜃, 𝜎2), then the sample mean 𝑋 ∼ 𝒩(𝜃, 𝜎2/𝑛). The same calculation will
follow with 𝑋 would be replaced by 𝑋 and 𝜎2 will be replaced by 𝜎2

𝑛 , respectively. Then the
posterior distribution of 𝜃 is normal, with mean and variance given by

E(𝜃|𝑥) = 𝑥𝑛𝜏2 + 𝜇𝜎2

𝜎2 + 𝑛𝜏2 , Var(𝜃|𝑥) = 𝜎2𝜏2

𝜎2 + 𝑛𝜏2 ,

and the Bayesian estimator is given as follows;

̂𝜃𝐵 = ( 𝑛𝜏2

𝜎2 + 𝑛𝜏2 ) 𝑋 + ( 𝜎2

𝜎2 + 𝑛𝜏2 ) 𝜇.

As 𝑛 → ∞, 𝑛𝜏2
𝜎2+𝑛𝜏2 → 1 and 𝜎2

𝜎2+𝑛𝜏2 → 0, so that ̂𝜃𝐵 ≈ 𝑋. But, when 𝑛 is small, use of prior
information improves the estimate. Since, 𝑋 → 𝜃 in probability as 𝑛 → ∞, which follows that

̂𝜃𝐵 → 𝜃 in probability as 𝑛 → ∞ (By Slutsky’s theorem). MSE of ̂𝜃𝐵 is given by
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E𝜃( ̂𝜃𝐵 − 𝜃)2 = Var𝜃( ̂𝜃𝐵) + (Bias𝜃( ̂𝜃𝐵))
2

= Var𝜃 (𝑋𝑛𝜏2 + 𝜇𝜎2

𝜎2 + 𝑛𝜏2 ) + (E𝜃 (𝑋𝑛𝜏2 + 𝜇𝜎2

𝜎2 + 𝑛𝜏2 ) − 𝜃)
2

= 𝜏4𝑛𝜎2

(𝜎2 + 𝑛𝜏2)2 + ((𝜇 − 𝜃)𝜎2

𝜎2 + 𝑛𝜏2 )
2

= 𝜎2

(𝜎2 + 𝑛𝜏2)2 ⋅ (𝑛𝜏4 + (𝜇 − 𝜃)2𝜎2) .

The estimators ̂𝜃𝐵 and 𝑋 are compared for different sample sizes and also for different choices
of the prior variance 𝜏2 (Figure 4.2a and Figure 4.2b). The estimator can also be compared
by using the relative efficiency, which is defined as the MSE of the two estimators. So the
efficiency of ̂𝜃𝐵 relative to 𝑋, eff𝜃( ̂𝜃𝐵|𝑋), is

MSE𝜃( ̂𝜃𝐵)
MSE𝜃(𝑋) = 𝑛𝜏4 + (𝜇 − 𝜃)2𝜎2

(𝜎2 + 𝑛𝜏2)2 .

If 𝜇 = 𝜃, for a given sample size 𝑛, relative efficiency is minimum and less than 1. Hence, ̂𝜃𝐵
is more efficient than 𝑋 for any given 𝑛. If we move 𝜃 values away from 𝜇, then eff𝜃( ̂𝜃𝐵|𝑋)
crosses the line 𝑦 = 1. For theta values beyond that point, 𝑋 is better than ̂𝜃𝐵. We encourage
the reader to draw this picture and compare two estimators based on the relative efficiency. It
is clearly understood that, essentially we are describing the same thing, only with a different
graphical representation. Of course, the function curve from R is a very useful tool, which has
been utilized throughout this material.

R Code for Figure 4.2a and Figure 4.2b

sigma = sqrt(1) # population sd, known
mu = 3 # prior mean value
tau = sqrt(0.5) # prior sd
n_vals = c(4, 10, 20) # sample size

par(mfrow=c(2,3)) # space for six plots in a single window
for(n in n_vals){
curve(sigma^2/(sigma^2 + n*tau^2)^2*(n*tau^4 + (mu-x)^2*sigma^2),

0, 6, col = "blue", lwd=3, ylab = "MSE", ylim=c(0,0.3),
main = paste("n = ", n), xlab = expression(theta), cex.lab = 1.5)

abline(h=sigma^2/n,col = "grey", lwd=3)
points(mu, 0, lwd=2.5, pch=20, cex=2)
text(mu+0.8, 0, expression(mu), cex = 1.5 )
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Figure 2.3: MSE𝜃( ̂𝜃) and MSE𝜃( ̂𝜃𝐵) are plotted as a function of 𝜃 for different sample size 𝑛.
The prior distribution of 𝜃 is considered to be 𝒩(𝜇 = 3, 𝜏2 = 0.5). The prior mean
𝜇 is indicated by a black dot. For sample size, 𝑛 = 4, MSE𝜃( ̂𝜃𝐵) is smaller than
MSE𝜃( ̂𝜃) at all values of 𝜃 in a neighborhood of 𝜇. As we move away from 𝜇, ̂𝜃 is
more preferable outsize the neighborhood of 𝜇. However, as we increase 𝑛, MSE of
both the estimators become closer in every neighborhood of 𝜇 (𝑛 = 20), reducing
the impact of prior information.

Figure 2.4: The MSE of the two estimators are compared at different values of 𝜏2. For small
sample size (𝑛 = 4) and small 𝜏2 < 𝜎2, ̂𝜃𝐵 performs better that ̂𝜃. For large values
of 𝜏2 > 𝜎2, MSE𝜃( ̂𝜃𝐵) increases. Basically, prior information becomes vague for
large 𝜏2 values. As expected, for large sample size (𝑛 = 20) both the estimators
perform at par irrespective of the prior variance.
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}
legend = c( expression(paste("MSE"[theta], (hat(theta)))),

expression(paste("MSE"[theta], (hat(theta)[B]))))
legend("topright",legend = legend, lwd = c(3,3),col = c("grey","blue"),

lty = c(1,1), cex = 0.8, bty = "n")

par(mfrow=c(2,3))
n_vals = c(4, 10, 20)
sigma = sqrt(1)
tau_vals = sqrt(c(0.5, 1, 2)) # varying prior sd
for(n in n_vals){

for(i in 1:length(tau_vals)){
tau = tau_vals[i]
if(i == 1){
curve(sigma^2/(sigma^2 + n*tau^2)^2*(n*tau^4 + (mu-x)^2*sigma^2),

0, 6, col = i+1, lwd=3, ylab = "MSE", ylim=c(0,0.5), lty=i,
xlab = expression(theta), main = paste("n = ", n), cex.lab = 1.5)

abline(h=sigma^2/n, lwd=3, col = "grey")
points(mu, 0, lwd=3, pch=20, cex=2)
text(mu+0.8, 0, expression(mu), cex=1.5 )

}
else
curve(sigma^2/(sigma^2 + n*tau^2)^2*(n*tau^4 + (mu-x)^2*sigma^2),

0, 6, col = i+1, lwd=2.5, add = TRUE, lty=i)
}

}
legend = c(expression(paste(tau^2,"=", 0.5)), expression(paste(tau^2,"=", 1)),

expression(paste(tau^2,"=", 2)))
legend("topright", legend, col = c(2,3,4), lwd=c(3,3,3), lty=1:3, bty = "n")

2.3 Example - III (Beta prior for Bernoulli(𝑝))

Let 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 be iid Bernoulli(𝑝). Then 𝑌 = ∑𝑛
𝑖=1 𝑋𝑖 is binomial(𝑛, 𝑝). We assume the

prior distribution of 𝑝 is Beta(𝛼, 𝛽). Then the joint distribution of 𝑌 and 𝑝 is given by

𝑓(𝑦, 𝑝) = [(𝑛
𝑦)𝑝𝑦(1 − 𝑝)𝑛−𝑦] [ Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)𝑝𝛼−1(1 − 𝑝)𝛽−1]

= (𝑛
𝑦) Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)𝑝𝑦+𝛼−1(1 − 𝑝)𝑛−𝑦+𝛽−1.
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The marginal pdf of 𝑌 is

𝑓(𝑦) = ∫
1

0
𝑓(𝑦, 𝑝)d𝑝 = (𝑛

𝑦) Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)

Γ(𝑦 + 𝛼)Γ(𝑛 − 𝑦 + 𝛽)
Γ(𝑛 + 𝛼 + 𝛽) ,

which is the beta-binomial distribution. The posterior distribution of 𝑝 is given as follows;

𝜋(𝑝|𝑦) = 𝑓(𝑦, 𝑝)
𝑓(𝑦) = Γ(𝑛 + 𝛼 + 𝛽)

Γ(𝑦 + 𝛼)Γ(𝑛 − 𝑦 + 𝛽)𝑝𝑦+𝛼−1(1 − 𝑝)𝑛−𝑦+𝛽−1,

which is beta(𝑦 +𝛼, 𝑛−𝑦 +𝛽). So, the Bayes estimator of 𝑝 is taken as a mean of the posterior
distribution under a squared error loss, and it is given as follows;

̂𝑝𝐵 = 𝑦 + 𝛼
𝛼 + 𝛽 + 𝑛.

We can write ̂𝑝𝐵 in the following way;

̂𝑝𝐵 = ( 𝑛
𝛼 + 𝛽 + 𝑛) (𝑌

𝑛 ) + ( 𝛼 + 𝛽
𝛼 + 𝛽 + 𝑛) ( 𝛼

𝛼 + 𝛽 ) . (2.2)

Thus ̂𝑝𝐵 is a linear combination of the prior mean and the sample mean. The weights are
determined by the values of 𝛼, 𝛽 and 𝑛. In the present situation, the MSE of ̂𝑝 is

E𝑝( ̂𝑝 − 𝑝)2 = Var((𝑋)) = 𝑝(1 − 𝑝)
𝑛 . (2.3)

Since, 𝑋 is an unbiased estimator of 𝑝, hence the MSE is equal to the variance. Now, given
𝑌 = ∑𝑛

𝑖=1 𝑋𝑖, the MSE of the Bayesian estimator of 𝑝, ̂𝑝𝐵 = 𝑌 +𝛼
𝛼+𝛽+𝑛 is

E𝑝( ̂𝑝𝐵 − 𝑝)2 = Var𝑝( ̂𝑝𝐵) + (Bias𝑝 ̂𝑝𝐵)2

= Var𝑝 ( 𝑌 + 𝛼
𝛼 + 𝛽 + 𝑛) + (E𝑝 ( 𝑌 + 𝛼

𝛼 + 𝛽 + 𝑛) − 𝑝)
2

= 𝑛𝑝(1 − 𝑝)
(𝛼 + 𝛽 + 𝑛)2 + (𝛼 − 𝑝(𝛼 + 𝛽))2

(𝛼 + 𝛽 + 𝑛)2 .

R Code for Figure 2.5
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Figure 2.5: MSE𝑝( ̂𝑝) = MSE𝑝(𝑋) = 𝑝(1−𝑝)
𝑛 and MSE𝑝( ̂𝑝𝐵) = 𝑛𝑝(1−𝑝)+[𝛼−𝑝(𝛼+𝛽)]2

(𝛼+𝛽+𝑛)2 are com-
puted based on simulated data from a Bin(𝑛, 𝑝) distribution. The prior distribu-
tion 𝜋(𝑝) is assumed to be Beta(𝛼, 𝛽). Here we consider 𝛼 = 𝛽 = √𝑛

4 so that
MSE( ̂𝑝𝐵) = 𝑛

4(𝑛+√𝑛)2 , which is constant for all values of 𝑝(0 < 𝑝 < 1), for fixed 𝑛.
The computation was done for different sample sizes as depicted in the figure. At
each value of 𝑝, average MSEs of both the estimators were computed using 1000
replications. The MSEs are plotted against different values of 𝑝. For small sample
size 𝑛 = 4, ̂𝑝𝐵 has more precision in estimating the true proportion than ̂𝑝 for
almost all 𝑝 ∈ (0, 1) except the values closer to 0 and 1, where ̂𝑝 is better. How-
ever, as sample size increases, the interval in which ̂𝑝𝐵 is better than ̂𝑝 decreases
substantially. For 𝑛 = 400, ̂𝑝𝐵 works better in a very small interval about 0.5.
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par(mfrow = c(2,3))
n_vals = c(4, 25, 50, 100, 200, 400) # size of the sample
rep = 10^4 # number of replication
P = seq(0.001, 0.99, length.out = 25) # values of the true probability
for(n in n_vals){
alpha = sqrt(n/4); beta = sqrt(n/4) # Beta(alpha, beta) to make the MSE constant
mse_p_cap = numeric(length = length(P))
mse_pB_cap = numeric(length = length(P))

for(i in 1:length(P)){
p_cap = numeric(rep)
pB_cap = numeric(rep)

for(j in 1:rep){
d = rbinom(n, 1, P[i])
p_cap[j] = sum(d)/n
pB_cap[j] = (sum(d) + alpha)/(alpha + beta + n )

}
mse_p_cap[i] = mean((p_cap - P[i])^2)
mse_pB_cap[i] = mean((pB_cap - P[i])^2)

}
ylim = c(min(mse_p_cap, mse_pB_cap), max(mse_p_cap, mse_pB_cap))
plot(P, mse_p_cap, col = "red", lwd=2, main = paste("n = ", n),

ylim = ylim, type = "l", ylab = "MSE", lty =2, xlab = expression(p))
lines(P, mse_pB_cap, col = "blue", lwd=2, lty=1)
legend = c(expression(paste("MSE"[p], (hat(p[B])))),

expression(paste("MSE"[p], (hat(p)))))
legend("bottomleft", legend = legend, lwd=c(2,2), col = c("blue", "red"),

bty = "n", lty = c(1,2), cex = 0.8)

2.4 Example - IV (Generalization of Hierarchical Bayes)

We examine a generalization of the Hierarchical Bayes model. Let 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 be an ob-
served random sample of size 𝑛 such that

𝑋𝑖|𝜆𝑖 ∼ Poisson(𝜆𝑖), 𝑖 = 1, 2, ⋯ , 𝑛, independent.
Suppose 𝜆𝑖, 𝑖 = 1, 2, ⋯ , 𝑛 have a gamma(𝛼, 𝛽) distribution, which is the conjugate family for
Poisson. So, the hierarchical model is given by,

𝑋𝑖|𝜆𝑖 ∼ Poisson(𝜆𝑖), 𝑖 = 1, 2, ⋯ , 𝑛, independent,
𝜆𝑖 ∼ gamma(𝛼, 𝛽), 𝑖 = 1, 2, ⋯ , 𝑛, independent,
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where 𝛼 and 𝛽 are known positive constants, usually provided by the experimenter. Our
interest is to estimate the 𝜆𝑖, 𝑖 = 1, 2, ⋯ , 𝑛, based on observed sample. The prior distribution
of 𝜆𝑖 is given by,

𝜋(𝜆𝑖) = 𝑒− 𝜆𝑖
𝛽 𝜆𝛼−1

𝑖
Γ(𝛼)𝛽𝛼 , 𝑖 = 1, 2, ⋯ , 𝑛.

Suppose, we have a situation where the parameter 𝛽 is not provided by the experimenter.
However, the value of 𝛼 is known. To obtain an estimate of 𝜆𝑖, we first have to estimate
the parameter 𝛽. A critical point is that if we would like to estimate 𝛽, then we require
independent observations from the gamma(𝛼, 𝛽) distribution. Although 𝜆𝑖’s are there from the
said distribution, but these are not observable quantities. The empirical Bayes analysis makes
use of the observed sample 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 to estimate the parameters of the prior distribution.
We First obtain the marginal distribution of 𝑋𝑖’s. The use of moment generating function
ease the process of computing the marginal distribution greatly. Let 𝑀𝑋𝑖

(𝑡) = E(𝑒𝑡𝑋𝑖), be the
mgf of 𝑋𝑖, 𝑖 = 1, 2, ⋯ , 𝑛, which is

𝑀𝑋𝑖
(𝑡) = E (𝑒𝑡𝑋𝑖)

= E [E (𝑒𝑡𝑋𝑖 |𝜆𝑖)]
= E (𝑒𝜆𝑖(𝑒𝑡−1))

= 1
[1 − 𝛽(𝑒𝑡 − 1)]𝛼 , [𝑀𝜆𝑖

(𝑡) = (1 − 𝛽𝑡)−𝛼]

= (
1

𝛽+1
1 − 𝛽

𝛽+1𝑒𝑡 )
𝛼

.

which is the mgf of Negative Binomial distribution with parameter 𝑟 = 𝛼 and 𝑝 = 1
𝛽+1 . Recall

that if 𝑋 follows negative binomial distribution, 𝑋 ∼ NB(𝑟, 𝑝) then mgf of 𝑋 is given by
( 𝑝

1−(1−𝑝)𝑒𝑡 )𝛼
and E𝑋 = 𝑟(1−𝑝)

𝑝2 and Var(𝑋) = 𝑟(1−𝑝)
𝑝2 . So, 𝑋𝑖 ∼ NB (𝛼, 1

𝛽+1) , 𝑖 = 1, 2, ⋯ , 𝑛,
whose pmf of is given by,

𝑃 (𝑋𝑖 = 𝑥𝑖) = (𝑥𝑖 + 𝛼 − 1
𝑥𝑖

) ( 1
𝛽 + 1)

𝛼
( 𝛽

𝛽 + 1)
𝑥𝑖

, 𝑥𝑖 ∈ {0, 1, 2, ⋯}.

A pleasant surprise is that we observe 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 which are marginally iid and follows
NB (𝛼, 1

𝛽+1). Hence, 𝛽 can be estimated by using 𝑋1, 𝑋2, ⋯ , 𝑋𝑛. We can use the maximum
likelihood estimation method to estimate 𝛽. The likelihood function ℒ(𝛽) is given as follows;

ℒ(𝛽) = [
𝑛

∏
𝑖=1

(𝑥𝑖 + 𝛼 − 1
𝑥𝑖

)] ( 1
𝛽 + 1)

𝛼
( 𝛽

𝛽 + 1)
𝑥𝑖

, (2.4)
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and the corresponding log-likelihood function, 𝑙(𝛽) = ln(ℒ(𝛽)) is

𝑙(𝛽) =
𝑛

∑
𝑖=1

ln(𝑥𝑖 + 𝛼 − 1
𝑥𝑖

) − 𝑛𝛼 ln(1 + 𝛽) +
𝑛

∑
𝑖=1

𝑥𝑖 ln( 𝛽
1 + 𝛽 ) . (2.5)

Taking first order derivative with respect to 𝛽 and making 𝜕𝑙(𝛽)
𝜕𝛽 = 0, we obtain the likelihood

equation as

−𝑛𝛼
1 + 𝛽 + (

𝑛
∑
𝑖=1

𝑥𝑖) ( 1
𝛽 − 1

1 + 𝛽 ) = 0.

On simplifying we get estimator for prior parameter 𝛽 as, ̂𝛽 = X̄
𝛼 . It can be easily verified that

𝜕2𝑙(𝛽)
𝜕𝛽2 = 𝑛𝛼

(𝛽+1)2 +∑𝑛
𝑖=1 𝑥𝑖 (− 1

𝛽2 + 1
(1+𝛽)2 ) at 𝛽 = ̂𝛽, 𝜕2(𝛽)

𝜕𝛽2 ∣
𝛽= X̄

𝛼

= −𝑛𝛼3x̄−𝑛𝛼4
x̄(�̄�+𝛼)2 < 0, showing that ̂𝛽

is the MLE of 𝛽. Once the estimate of the unknown prior 𝛽 is obtained, the model becomes

𝑋𝑖|𝜆𝑖 ∼ Poisson(𝜆𝑖), 𝑖 = 1, 2, ⋯ , 𝑛, independent,
𝜆𝑖 ∼ gamma(𝛼, ̂𝛽), 𝑖 = 1, 2, ⋯ , 𝑛, independent.

The posterior distribution that is the conditional distribution of 𝜆𝑖 given the sample 𝑥𝑖, 𝑖 =
1, 2, ⋯ , 𝑛 is

𝜋(𝜆𝑖|𝑥𝑖) = 𝑓(𝑥𝑖|𝜆𝑖)𝜋(𝜆𝑖)
𝑓(𝑥𝑖)

=
𝑒−𝜆𝑖 𝜆𝑥𝑖

𝑖
𝑥𝑖!

𝑒
− 𝜆𝑖

̂𝛽 𝜆𝛼−1
𝑖

Γ(𝛼) ̂𝛽𝛼

(𝑥𝑖+𝛼−1
𝑥𝑖

) ( 1
̂𝛽+1)

𝛼
( ̂𝛽

̂𝛽+1)
𝑥𝑖

=
𝜆𝑥𝑖+𝛼−1

𝑖 𝑒−𝜆𝑖(1+ 1
̂𝛽 ) (1 + 1

̂𝛽)
𝑥𝑖+𝛼

Γ(𝑥𝑖 + 𝛼) .

So, 𝜆𝑖|𝑥𝑖 ∼ gamma(𝑥𝑖 + 𝛼, (1 + 1
̂𝛽)

−1
). The Bayes estimator of 𝜆𝑖 under a squared error

loss, that is the posterior mean E(𝜆𝑖|𝑥𝑖) is given by,

̂𝜆𝑖𝐵 = (𝑥𝑖 + 𝛼) (1 + 1
̂𝛽
)

−1
.
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Note that the Bayes estimate of 𝜆𝑖 contains the term ̂𝛽, which was estimated from data. Hence,
there is uncertainty associated with the estimate of the prior parameter 𝛽. We can estimate
Var( ̂𝛽) as follows:

Var( ̂𝛽) = 1
𝛼2𝑛2Var𝛽(

𝑛
∑
𝑖=1

𝑋𝑖) = 1
𝛼2𝑛Var𝛽(𝑋1) = 1

𝛼2𝑛
𝛼 (1 − 1

𝛽+1)
( 1

𝛽+1)2 = 𝛽(𝛽 + 1)
𝑛𝛼 .

So the estimated variance is ̂𝛽( ̂𝛽+1)
𝑛𝛼 . However, it does not play any role in empirical Bayes

estimation. This is a drawback of the empirical Bayes estimation. However, in hierarchical
Bayes, the unknown prior parameter is replaced by a distribution. Hence the uncertainty in
the hyperparameters gets included in the final estimation of the posterior mean. This is an
advantage of hierarchical Bayes over empirical Bayes. The hierarchical formulation of the same
problem may be stated as follows:

𝑋𝑖|𝜆𝑖 ∼ Poisson(𝜆𝑖), 𝑖 = 1, 2, ⋯ , 𝑛, independent
𝜆𝑖 ∼ gamma(𝛼, 𝛽), 𝑖 = 1, 2, ⋯ , 𝑛, independent,
𝛽 ∼ uniform(0, ∞) (noninformative prior).

Coming back to the problem again, the empirical Bayes estimator is given by

̂𝜆𝑖𝐵 = (
̂𝛽

1 + ̂𝛽
) 𝑥𝑖 + ( 1

1 + ̂𝛽
) (𝛼 ̂𝛽).

Again with no surprise, ̂𝜆𝑖𝐵 is a linear combination of the prior mean and sample mean.
In above, we estimate 𝜆𝑖 using only single observation form Poission(𝜆𝑖), 𝑖 = 1, 2, ⋯ , 𝑛. In
the discussed example, we have assumed 𝛼 to be known and 𝛽 unknown. However, it might
happen that both 𝛼 and 𝛽 are known. In such situation, both 𝛼 and 𝛽 may be estimated from
the observed samples 𝑋1, 𝑋2, ⋯ , 𝑋𝑛, whose marginal distributions are iid NB (𝛼, 1

𝛽+1). The
likelihood equations are given by

𝜕𝑙(𝛼, 𝛽)
𝜕𝛼 = 0, 𝜕𝑙(𝛼, 𝛽)

𝜕𝛽 = 0,

where the log-likelihood function 𝑙(𝛼, 𝛽) is same as given in the equation Equation 2.5. These
maximization must be carried out using some numerical procedures, for example Newton
Raphson method. The estimates and associated standard errors can be obtained using R. For
example, the likelihood function can be passed in the optim function or the function fitdistr,
available in the MASS package (Venables and Ripley 2002), may be utilized. Sample code is
given below:
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> x = rgamma(n = 50, shape = 2, rate = 3)
> library(MASS)
> fit = fitdistr(x = x, "gamma", lower = 0.01)
> fit$estimate

shape rate
1.615070 2.922565
> fit$sd

shape rate
0.2956650 0.6261151
> hist(x, prob = T, col = "lightgrey")
> curve(dgamma(x, shape = fit$estimate[1], rate = fit$estimate[2]),

col = "red", lwd=2, add = TRUE)

In the same example, we may have a one way classification with 𝑛 groups and 𝑚 observations
per group. Then the example extends to

𝑋𝑖𝑗|𝜆𝑖 ∼ Poisson(𝜆𝑖), 𝑖 = 1, 2, ⋯ , 𝑛; 𝑗 = 1, 2, ⋯ , 𝑚; independent,
𝜆𝑖 ∼ gamma(𝛼, 𝛽), 𝑖 = 1, 2, ⋯ , 𝑛; independent.

To estimate 𝜆𝑖, we use the statistic 𝑌𝑖 = ∑𝑚
𝑗=1 𝑋𝑖𝑗, then 𝑌𝑖|𝜆𝑖 ∼ Poisson(𝑚𝜆𝑖), 𝑖 = 1, 2, ⋯ , 𝑛.

The marginal pdf of 𝑌𝑖 is

𝑓(𝑦𝑖) = ∫
∞

0
𝑓(𝑦𝑖|𝜆𝑖)𝜋(𝜆𝑖)d𝜆𝑖

= ∫
∞

0

𝑒−𝑚𝜆𝑖(𝑚𝜆𝑖)𝑦𝑖

𝑦𝑖!
𝑒− 𝜆𝑖

̂𝛽 𝜆𝛼−1
𝑖

Γ(𝛼) ̂𝛽𝛼
d𝜆𝑖

= ∫
∞

0

𝑒−𝜆𝑖(𝑚+ 1
𝛽 )𝑚𝑦𝑖𝜆𝑦𝑖+𝛼−1

𝑖
𝑦𝑖!𝛽𝛼Γ(𝛼)

=
𝑚𝑦𝑖 {(𝑚 + 1

𝛽)−1}
𝑦𝑖+𝛼

Γ(𝑦𝑖 + 𝛼)
𝑦𝑖!𝛽𝛼Γ(𝛼)

= Γ(𝑦𝑖 + 𝛼 + 1 − 1)
Γ(𝑦𝑖 + 1)Γ(𝛼) ( 𝑚𝛽

𝑚𝛽 + 1)
𝑦𝑖

( 1
𝑚𝛽 + 1)

𝛼

= (𝑦𝑖 + 𝛼 − 1
𝑦𝑖

) ( 1
𝑚𝛽 + 1)

𝛼
(1 − 1

𝑚𝛽 + 1))
𝑦𝑖

.
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So, 𝑌𝑖 ∼ NB (𝛼, 1
𝑚𝛽+1) , 𝑖 = 1, 2, ⋯ , 𝑛. The posterior distribution of 𝜆𝑖 is given by,

𝜋(𝜆𝑖|𝑦𝑖) = 𝑓(𝑦𝑖|𝜆𝑖)𝜋(𝜆𝑖)
𝑓(𝑦𝑖)

=
𝑒𝑚𝜆𝑖 (𝑚𝜆𝑖)𝑦𝑖

𝑦𝑖!
𝑒− 𝜆𝑖

𝛽 𝜆𝛼−1
𝑖

𝛽𝛼Γ(𝛼)
𝑓(𝑦𝑖)

=
𝜆𝑦𝑖+𝛼−1

𝑖 𝑒−𝜆𝑖(𝑚+ 1
𝛽 ) (𝑚 + 1

𝛽)𝑦𝑖+𝛼

Γ(𝑦𝑖 + 𝛼) ,

which shows that 𝜆𝑖|𝑦𝑖 ∼ gamma(𝑦𝑖 + 𝛼, (𝑚 + 1
𝛽)−1). The posterior mean, that is the Bayes

estimator of 𝜆𝑖 under a squared error loss is

̂𝜆𝑖𝐵 = E(𝜆𝑖|𝑦𝑖)

= (𝑦𝑖 + 𝛼) (𝑚 + 1
𝛽 )

−1

= (
𝑚

∑
𝑗=1

𝑥𝑖𝑗 + 𝛼) (𝑚 + 1
𝛽 )

−1
,

= ( 𝑚𝛽
1 + 𝑚𝛽 ) ̄𝑋𝑖 + ( 1

1 + 𝑚𝛽 ) (𝛼𝛽).

Thus, ̂𝜆𝑖𝐵 is a linear combination of the prior mean and sample mean. The variance of ̂𝜆𝑖𝐵 is
given by

Var𝜆𝑖
( ̂𝜆𝑖𝐵) = ( 𝑚𝛽

1 + 𝑚𝛽 )
2
Var𝜆𝑖

( ̄𝑋𝑖),

= ( 𝑚𝛽
1 + 𝑚𝛽 )

2
(𝜆𝑖

𝑚) .

With no surprise, for large 𝑚, the above expression is close to the variance of maximum
likelihood estimator ( 𝑚𝛽

𝑚𝛽+1 → 1 for large 𝑚).

2.5 Example - V (Gamma prior for Exponential rate parameter)

Let 𝑌1,𝑌2,⋯,𝑌𝑛 be a observed random sample of size 𝑛 such that

𝑌𝑖|𝜆 ∼ exponential(𝜆), 𝑖 = 1, 2, ⋯ , 𝑛, independent.

Suppose that 𝜆 has a gamma(𝛼, 𝛽) distribution, which is the conjugate family for Exponential.
So, the statistical model has the following hierarchy
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𝑌𝑖|𝜆 ∼ exponential(𝜆), 𝑖 = 1, 2, ⋯ , 𝑛, (2.6)
𝜆 ∼ gamma(𝛼, 𝛽), (2.7)

where 𝛼 and 𝛽 are known. Now, our interest is to estimate the 𝜆 based on observed sample.
The prior distribution of 𝜆 is given by,

𝜋(𝜆) = 𝑒− 𝜆
𝛽 𝜆𝛼−1

Γ(𝛼)𝛽𝛼 , 𝜆 > 0, (2.8)

where 𝛼 and 𝛽 are positive constants. First, we shall estimate the posterior distribution of
𝜆. We start with statistic 𝑍 = ∑𝑛

𝑖=1 𝑌𝑖. Sampling distribution of 𝑍 is gamma(𝑛, 𝜆) and it is
denoted by 𝑓(𝑧|𝜆). The posterior distribution of 𝜆 given the sample 𝑌1, 𝑌2, ⋯ , 𝑌𝑛, that is given
𝑍 = 𝑧, is

𝜋(𝜆|𝑧) = 𝑓(𝑧|𝜆)𝜋(𝜆)
𝑓(𝑧) ,

where 𝑓(𝑧) is the marginal distribution of 𝑍, and calculated as follows;

𝑓(𝑧) = ∫
∞

0
𝑓(𝑧|𝜆)𝜋(𝜆)d𝜆

= ∫
∞

0

𝑧𝑛−1𝑒−𝜆𝑧𝜆𝑛

Γ(𝑛)
𝜆𝛼−1𝑒− 𝜆

𝛽

Γ(𝛼)𝛽𝛼 d𝜆

= 𝑧𝑛−1

Γ(𝑛)Γ(𝛼)𝛽𝛼 ∫
∞

0
𝑒−𝜆(𝑧+ 1

𝛽 )𝜆𝛼+𝑛−1d𝜆

= 𝑧𝑛−1Γ(𝛼 + 𝑛)
Γ(𝑛)Γ(𝛼)𝛽𝛼(𝑧 + 1

𝛽 )𝛼+𝑛 ∫
∞

0

𝜆𝛼+𝑛−1𝑒−𝜆(𝑧+ 1
𝛽 )(𝑧 + 1

𝛽 )𝛼+𝑛

Γ(𝛼 + 𝑛) d𝜆

= 𝑧𝑛−1Γ(𝛼 + 𝑛)
Γ(𝑛)Γ(𝛼)𝛽𝛼(𝑧 + 1

𝛽 )𝛼+𝑛 ,

where,

∫
∞

0

𝜆𝛼+𝑛−1𝑒−𝜆(𝑧+ 1
𝛽 )(𝑧 + 1

𝛽 )𝛼+𝑛

Γ(𝛼 + 𝑛) 𝑑𝜆 = 1.

because it is pdf of gamma (𝛼 + 𝑛, (𝑧 + 1
𝛽 )−1) distribution. So integral reduces to 1. Now,

posterior density 𝜋(𝜆|𝑧) becomes,
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𝜋(𝜆|𝑧) = 𝑓(𝑧|𝜆)𝜋(𝜆)
𝑓(𝑧)

= 𝑧𝑛−1𝑒−𝜆𝑧𝜆𝑛

Γ(𝑛)
𝑒− 𝜆

𝛽 𝜆𝛼−1

Γ(𝛼)𝛽𝛼
Γ(𝑛)Γ(𝛼)(𝑧 + 1

𝛽 )𝛼+𝑛𝛽𝛼

𝑧𝑛−1Γ(𝛼 + 𝑛)

=
𝑒−𝜆(𝑧+ 1

𝛽 )𝜆𝛼+𝑛−1(𝑧 + 1
𝛽 )𝛼+𝑛

Γ(𝛼 + 𝑛) , 0 < 𝜆 < ∞.

Hence, the posterior distribution of 𝜆, 𝜆|𝑧 ∼ gamma (𝛼 + 𝑛, (𝑧 + 1
𝛽 )−1). So exact posterior

mean E(𝜆|𝑧) is
𝛼 + 𝑛
𝑧 + 1

𝛽
= 𝛼 + 𝑛

𝑛 ̄𝑦 + 1
𝛽

Now, we approximate the posterior mean of 𝜆 using a Monte Carlo (MC) sample, given 𝑚
independent values drawn directly from gamma(𝛼+𝑛, 𝑛 ̄𝑦 + 1

𝛽 ) posterior distribution. Further,
the accuracy of the monte carlo approximation is compared with respect to the exact posterior
distribution. First of all, we generated 𝑦 of size 𝑛 = 50 from exponential distribution with
parameter 𝜆, where 𝜆 was generated from gamma(𝛼 = 8, 𝛽 = 4) density function. To generate
the independent values of 𝜆 of the MC sample from the known posterior distribution the
function rgamma was utilized with posterior rate and shape parameter.

R Code for Figure 2.6

set.seed(123)
n = 50 # sample size
alpha = 8 # prior parameter
beta = 4 # prior parameter
lambda = rgamma(1,alpha,beta) # true lambda
lambda
y = rexp(n = n,rate = lambda) # data (simulated here)
p_alpha = alpha + n; p_alpha # posterior alpha
p_beta = (1/beta) + n*mean(y); p_beta # posterior beta
p_mean = p_alpha/p_beta; p_mean # exact posterior mean
par(mfrow=c(1,3))
M = c(100,500,1000)
for (m in M) {
z1 = rgamma(n=m, shape=p_alpha, rate=p_beta)
hist(z1, probability = TRUE,main=paste("m =",m),

xlab=expression(lambda),col = "light grey", cex.lab = 1.5, cex.main = 1.5)
curve(dgamma(x, shape = p_alpha, rate = p_beta),

col ="blue", add=TRUE, lwd = 2)
points(lambda, 0, pch = 19,col = "red", cex = 2)}
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Figure 2.6: Histogram approximation of the posterior probability density of 𝜆 for different
posterior sample of size 𝑚. Red dot indicates the exact posterior mean (given
data). Blue colored curve represents the exact posterior density function.

2.6 Exercises

1. (Casella and Berger 2002) If 𝑆2 is the sample variance based on a sample of size 𝑛 from
a normal population, we know that (𝑛−1)𝑆2/𝜎2 has a 𝜒2

𝑛−1 distribution. The conjugate
prior for 𝜎2 is the inverted gamma pdf, IG(𝛼, 𝛽), given by,

𝜋(𝜎2) = 1
Γ(𝛼)𝛽𝛼

1
(𝜎2)𝛼+1 𝑒−1/(𝛽𝜎2), 0 < 𝜎2 < ∞,

where 𝛼 and 𝛽 are positive constants. Show that the posterior distribution of 𝜎2 is

IG(𝛼 + 𝑛 − 1
2 , [(𝑛 − 1)𝑆2

2 + 1
𝛽 ]

−1
) .

Find the mean of this distribution, the Bayes estimator of 𝜎2.

2. Suppose that 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 is a random sample from the distribution with pdf

𝑓(𝑥|𝜃) = 𝜃𝑥𝜃−1, 0 < 𝑥 < 1,
= 0, otherwise.

Suppose also that the value of the parameter 𝜃 is unknown (𝜃 > 0) and that the prior
distribution of 𝜃 is gamma(𝛼, 𝛽), 𝛼 > 0 and 𝛽 > 0. Determine the posterior distribution
of 𝜃 and hence obtain the Bayes estimator of 𝜃 under a squared error loss function.

3. (Casella and Berger 2002) Suppose that we observe 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 where

𝑋𝑖|𝜃𝑖 ∼ 𝒩(𝜃𝑖, 𝜎2), 𝑖 = 1, 2, ⋯ , 𝑛, independent
𝜃𝑖 ∼ 𝒩(𝜇, 𝜏2), 𝑖 = 1, 2, ⋯ , 𝑛, independent
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• Show that the marginal distribution of 𝑋𝑖 is 𝒩(𝜇, 𝜎2) and that, marginally,
𝑋1, 𝑋2, ⋯ , 𝑋𝑛 are iid. Empirical Bayes analysis would use the marginal distribu-
tion of 𝑋𝑖’s to estimate the prior parameters 𝜇 and 𝜏2.

• Show, in general, that if

𝑋𝑖|𝜃𝑖 ∼ 𝑓(𝜃𝑖, 𝜎2), 𝑖 = 1, 2, ⋯ , 𝑛, independent
𝜃𝑖 ∼ 𝜋(𝜃|𝜏), 𝑖 = 1, 2, ⋯ , 𝑛, independent

then 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 are iid.

4. (Wasserman 2004) Suppose that we observe 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 from 𝜇, 1. (a)Simulate a data
set (using 𝜇 = 5) consisting of 𝑛 = 100 observations. (b)Take 𝜋(𝜇) = 1 and find the
posterior density and plot the density. (c)Simulate 1000 draws from the posterior and
plot the histogram of the simulated values and compare the histogram to the answer
in (b). (d)Let 𝜃 = exp(𝜇), then find the posterior density for 𝜃 analytically and by
simulation. (e)Obtain a 95 percent posterior interval for 𝜇 and 𝜃.

5. (Wasserman 2004) Consider the Bernoulli(𝑝) observations:

0 1 0 1 0 0 0 0 0 0

Plot the posterior for 𝑝 using these prior distributions for 𝑝: beta(1/2, 1/2), beta(10, 10)
and beta(100, 100).

6. (Wasserman 2004) Let 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 ∼ Poisson(𝜆). Find the Jeffrey’s prior. Also, find
the corresponding posterior density function.
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3 Bayesian Estimation for Linear Regression
Problem

Regression models are commonly used in solving real life data analysis problems. Several
statistical softwares are now available that provide posterior distributions of the regression
coefficients and allows various choice of the prior distributions. In this document, we shall
focus on the detailing of the regression models under a Bayesian setting. we are hoping that
this will be helpful for the students to understand the concept better rather than blindly
believing the output of softwares. We start our discussion with the most simplest setting
Simple Linear Regression. In the next chapter, we shall discuss the Bayesian inference for
nonlinear models.

We have linear regression model;

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖,where 𝜖𝑖
iid∼ 𝒩(0, 𝜙),

and suppose we observe the data (𝑦𝑖, 𝑥𝑖), 𝑖 ∈ {1, 2, ⋯ , 𝑛}, then our model for 𝑦 is:

𝑦𝑖 ∼ 𝒩(𝛽0 + 𝛽1𝑥𝑖, 𝜙), 𝑖 = 1, 2, ⋯ , 𝑛. (3.1)

Our primary goal is to make inference about the parameters 𝛽0 and 𝛽1. If we consider normal
priors on the coefficients and an inverse gamma prior on the variance term, then full Bayesian
model for this data can be written as,

𝑦𝑖|𝛽0, 𝛽1, 𝜙 ∼ 𝒩(𝛽0 + 𝛽1𝑥𝑖, 𝜙), 𝑖 = 1, 2, ⋯ , 𝑛,
𝛽0|𝜇0, 𝜏0 ∼ 𝒩(𝜇0, 𝜏0)
𝛽1|𝜇1, 𝜏1 ∼ 𝒩(𝜇1, 𝜏1)

𝜙|𝛼, 𝛾 ∼ ℐ𝒢(𝛼, 𝛾), (3.2)

where 𝜇0, 𝜏0, 𝜇1, 𝜏1, 𝛼, 𝛾 all are hyper-parameters and we assume that they are known. Let
𝑦1, 𝑦2, ⋯ , 𝑦𝑛 are observed data of size 𝑛 from a population having normal distribution with
mean 𝛽0 +𝛽1𝑥𝑖 and variance 𝜙, where 𝛽0, 𝛽1 and 𝜙 are unknown. Our goal is to draw inference
about 𝛽0, 𝛽1 and 𝜙. Therefore, joint posterior distribution of 𝛽0, 𝛽1 and 𝜙 can be written
as,
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𝑓(𝛽0, 𝛽1, 𝜙|𝑦) = 𝑓(𝑦, 𝛽0, 𝛽1, 𝜙)
𝑓𝑌 (𝑦) , (3.3)

where, 𝑓𝑌 (𝑦) is the marginal distribution of 𝑦. Now equation (3.3) reduces to

𝑓(𝛽0, 𝛽1, 𝜙|𝑦) = 𝑓(𝑦|𝛽0, 𝛽1, 𝜙) ⋅ 𝑓(𝛽0, 𝛽1, 𝜙)
∫𝛽0

∫𝛽1
∫𝜙 𝑓(𝑦, 𝛽0, 𝛽1, 𝜙)𝑑𝛽0𝑑𝛽1𝑑𝜙. (3.4)

We assume that 𝛽0, 𝛽1 and 𝜙 are independent variable, therefore 𝑓(𝛽0, 𝛽1, 𝜙) can be written
as,

𝑓(𝛽0, 𝛽1, 𝜙) = 𝑓(𝛽0) ⋅ 𝑓(𝛽1) ⋅ 𝑓(𝜙). (3.5)

and let 𝐾 = ∫𝛽0
∫𝛽1

∫𝜙 𝑓(𝑦, 𝛽0, 𝛽1, 𝜙)d𝛽0d𝛽1d𝜙, this integration is difficult to compute. We know
that

posterior ∝ likelihood × priors.

Therefore, equation (3.4) becomes,

𝑓(𝛽0, 𝛽1, 𝜙|𝑦) = 1
𝐾 𝑓(𝑦|𝛽0, 𝛽1, 𝜙) ⋅ 𝑓(𝛽0, 𝛽1, 𝜙)

𝑓(𝛽0, 𝛽1, 𝜙|𝑦) ∝ 𝑓(𝑦|𝛽0, 𝛽1, 𝜙) ⋅ 𝑓(𝛽0, 𝛽1, 𝜙)

𝑓(𝛽0, 𝛽1, 𝜙|𝑦) ∝ [
𝑛

∏
𝑖=1

𝑓(𝑦𝑖|𝛽0, 𝛽1, 𝜙)] 𝑓(𝛽0) ⋅ 𝑓(𝛽1) ⋅ 𝑓(𝜙)

∝ likelihood × priors.

From the joint posterior distribution we can not generate random sample because it does not
follow any common known distribution. So, we generate random sample from conditional pos-
terior distribution of each parameter. In the following, we calculate the conditional posterior
distribution of each parameter. Using the relation

𝑓(𝑦, 𝛽0, 𝛽1, 𝜙) = 𝑓(𝛽0 ∣ 𝛽1, 𝜙, 𝑦) ⋅ 𝑓(𝛽1, 𝜙, 𝑦),

the conditional posterior distribution of the parameter 𝛽0 is given by,
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𝑓(𝛽0|𝛽1, 𝜙, 𝑦) = 𝑓(𝑦, 𝛽0, 𝛽1, 𝜙)
𝑓(𝛽1, 𝜙, 𝑦)

= 𝑓(𝑦|𝛽0, 𝛽1, 𝜙) ⋅ 𝑓(𝛽0, 𝛽1, 𝜙)
𝑓(𝛽1, 𝜙, 𝑦) [since, 𝑓(𝑦, 𝛽0, 𝛽1, 𝜙) = 𝑓(𝑦|𝛽0, 𝛽1, 𝜙) ⋅ 𝑓(𝛽0, 𝛽1, 𝜙)]

= 𝑓(𝑦|𝛽0, 𝛽1, 𝜙)𝑓(𝛽0)𝑓(𝛽1)𝑓(𝜙)
𝑓(𝑦|𝛽1, 𝜙)𝑓(𝛽1, 𝜙) [since, 𝑓(𝛽0, 𝛽1, 𝜙) = 𝑓(𝛽0)𝑓(𝛽1)𝑓(𝜙)]

= 𝑓(𝑦|𝛽0, 𝛽1, 𝜙)𝑓(𝛽0)𝑓(𝛽1)𝑓(𝜙)
𝑓(𝑦|𝛽1, 𝜙)𝑓(𝛽1)𝑓(𝜙)

= 𝑓(𝑦|𝛽0, 𝛽1, 𝜙)𝑓(𝛽0)
𝑓(𝑦|𝛽1, 𝜙) . (3.6)

Let, 𝑚 = 𝑓(𝑦|𝛽1, 𝜙), therefore,

𝑓(𝛽0|𝛽1, 𝜙, 𝑦) = 1
𝑚𝑓(𝑦|𝛽0, 𝛽1, 𝜙) ⋅ 𝑓(𝛽0)

∝ 𝑓(𝑦|𝛽0, 𝛽1, 𝜙) ⋅ (𝛽0)

∝ [
𝑛

∏
𝑖=1

𝑓(𝑦𝑖|𝛽0, 𝛽1, 𝜙)] ⋅ 𝑓(𝛽0). (3.7)

Like the joint posterior, the conditional posterior is also proportional to the product of the
likelihood and prior of the parameter of interest. The computation yields the similar expression
for 𝛽1 as given below;

𝑓(𝛽1|𝛽0, 𝜙, 𝑦) ∝ [
𝑛

∏
𝑖=1

𝑓(𝑦𝑖|𝛽0, 𝛽1, 𝜙)] ⋅ 𝑓(𝛽1), (3.8)

and,

𝑓(𝜙|𝛽0, 𝛽1, 𝑦) ∝ [
𝑛

∏
𝑖=1

𝑓(𝑦𝑖|𝛽0, 𝛽1, 𝜙)] ⋅ 𝑓(𝜙)

= ( 1√2𝜋𝜙)
𝑛

𝑒− 1
2𝜙 ∑𝑛

𝑖=1(𝑦𝑖−𝛽0−𝛽1𝑥𝑖)2 𝛾𝛼

Γ(𝛼)𝜙−𝛼−1𝑒− 𝛾
𝜙

= 𝜙− 𝑛
2 𝜙−𝛼−1𝑒− 1

𝜙 [ 1
2 ∑𝑛

𝑖=1(𝑦𝑖−𝛽0−𝛽1𝑥𝑖)2+𝛾]

= 𝜙−(𝛼+ 𝑛
2 +1)𝑒− 1

𝜙 [ 1
2 ∑𝑛

𝑖=1(𝑦𝑖−𝛽0−𝛽1𝑥𝑖)2+𝛾]. (3.9)
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The prior specification for 𝜙 is given by the inverse gamma density ℐ𝒢(shape = 𝛼, rate = 𝛾)
function which is given as follows,

𝑓(𝜙; 𝛼, 𝛾) = 𝛾𝛼

Γ(𝛼)𝜙−𝛼−1𝑒 −𝛾
𝜙 , 𝜙 > 0. (3.10)

Comparing the conditional posterior of 𝜙 with equation (3.10), we can see that 𝑓(𝜙|𝛽0, 𝛽1, 𝑦)
yields the inverse gamma distribution with the parameter values as, shape = 𝛼 + 𝑛

2 and rate
= 1

2 ∑𝑛
𝑖=1 (𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)

2 + 𝛾.

𝑓(𝜙|𝛽0, 𝛽1, 𝑦) = ℐ𝒢 (𝛼 + 𝑛
2 , 1

2
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)
2 + 𝛾) . (3.11)

Our goal is to draw inference about the population parameters 𝛽0, 𝛽1 and 𝜙. To compute
the posterior credible interval for the parameters, we require to draw samples from the joint
posterior distribution of 𝛽0, 𝛽1 and 𝜙 i.e 𝑓(𝛽0, 𝛽1, 𝜙). A posterior credible interval is a range
of values within which an unknown parameter lies with a certain probability, based on the
posterior distribution in Bayesian inference. It represents the uncertainty around the estimated
parameter after incorporating the observed data and prior beliefs. We observe that 𝑓(𝛽0, 𝛽1, 𝜙)
does not follow any common known distribution from which it easier to draw the samples.
So, we utilize the Gibbs sampling method, in which, random samples are drawn from the
conditional posterior distribution. So we compute the posterior distribution of 𝛽0, conditional
on 𝛽1 and 𝜙 (Eq. 3.7). Similarly conditional posterior distribution for 𝛽1 and 𝜙 are evaluated.
We evaluated the conditional posterior 𝑓(𝛽0|𝛽1, 𝜙) and 𝑓(𝛽1|𝛽0, 𝜙) by assuming normal priors
from 𝛽0 and 𝛽1 and inverse gamma prior for 𝜙. The calculation suggested that 𝑓(𝛽0|𝛽1, 𝜙)
and 𝑓(𝛽1|𝛽0, 𝜙) does not follow any common distribution. However, conditional posterior
distribution of 𝜙 belongs to the family of inverse gamma distribution (Eq. 3.11). This is due
to the conjugacy relationship between normal distribution and inverse gamma distribution with
respect to the parameter representing the variance. We utilized grid approximation method
for generating samples from the conditional posterior of 𝛽0 and 𝛽1. For generating samples
from the posterior of 𝜙 we used direction simulation from the inverse gamma distribution
using invgamma package (Kahle and Stamey 2017) from R software for statistical computing.
However, this can also be carried out by using probability integral transform.

Note

If 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 be a random sample of size 𝑛 from a population following 𝒩(𝜃, 𝜎2).
If 𝑆2 is the sample variance based on a sample of size 𝑛 from a normal population,
we know that (𝑛−1)𝑆2

𝜎2 has a 𝜒2
𝑛−1 distribution. The conjugate prior for 𝜎2 is the in-

verse gamma probability density ℐ𝒢(𝛼, 𝛽). Then the posterior distribution of 𝜎2 is,
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ℐ𝒢 (𝛼 + 𝑛−1
2 , [ (𝑛−1)𝑆2

2 + 1
𝛽]

−1
) .

In grid approximation method, we first define grid for estimating the posterior. After that
at every grid point we compute the likelihood and prior. By multiplying likelihood and prior
we get unstandardized posterior values at each grid point. Dividing each value by sum of
all values we get the standardized posterior values. This discrete distribution is then used to
simulate realization from exact posterior distribution. From all grid point we randomly select
one grid point according to their probability. This process is executed by using sample()
function available in R. We simulate this process for long time. After the sampling is done, we
get a chain of simulated values from the posterior distribution. Since, it is a Markov chain, the
sample values autocorrelated. To obtain independent observations we used thinning by taking
every sixteen observation after the burn-in period. However, the choice should be decided by
investigating the autocorrelation plot of the chain.

At this point, it is nice to have an idea on Gibbs sampling method. Suppose we have joint
probability distribution of parameters (not necessarily in known form), we want to generate
random sample from marginal probability distribution of each parameter. Then we use Gibbs
sampling method. In Gibbs sampling method, we generate values from the conditional distri-
bution, but we want values from marginal probability(unconditional) distribution. The values
which we get from conditional probability distribution of each parameter, after certain burn-
in period acts as a realization from the true marginal probability distribution of respective
parameters. In the current context on Bayesian linear regression, we want to simulate obser-
vations from the joint posterior density 𝑓(𝛽0, 𝛽1, 𝜙|𝑦). Since, it is difficult to simulate from
the joint distribution, we simulate from the conditional posterior distribution 𝑓(𝛽0|𝛽1, 𝜙, 𝑦).

3.1 Simulation study

For checking purpose using simulation, we have fixed population parameters of a linear re-
gression model as 𝛽0 = 3, 𝛽1 = 1 and 𝜙 = 1. Since we do not have the real data in our
hand, so we created artificial data using following model with these fixed values of parameters
(Figure 4.1),

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝒩(mean = 0, sd = √𝜙), 𝑖 ∈ {1, 2, ⋯ , 𝑛}.

We have prior for 𝛽0 and 𝛽1 is Normal distribution with mean(𝜇0), variance(𝜏0) and mean(𝜇1),
variance(𝜏1), respectively. Parameter 𝜙 have prior following the inverse gamma distribution
with shape(𝛼) and rate(𝛾). The hyper parameters 𝜇0, 𝜏0, 𝜇1, 𝜏1, 𝛼, 𝛾 are assumed to be known.
After that we computed the conditional posterior distribution of 𝛽0, 𝛽1 and 𝜙 assuming the
above priors. Conditional posterior of 𝑓(𝛽0|𝛽1, 𝜙) and 𝑓(𝛽1|𝛽0, 𝜙) do not follow any common
know distributions. So we have used grid approximation method for generating samples from
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the conditional posterior of 𝛽0 and 𝛽1. From this process we get the unstandardized posterior
values at the grid points, then we standardized this values by dividing the sum of all unstan-
dardized posterior values. We randomly select one grid sample and we iterate this process
for 100000 times but we consider starting 70000 random sample as burn-in period and after a
burn-in period. we want the independent random sample, to obtain independent sample we
used thinning by taking every sixteen sample after the burn-in period in posterior of 𝛽0 and
𝛽1. In posterior of 𝜙 we used thinning by taking every third sample after the burn-in period.
However, the choice is good should be decided by plotting ACF of after thinning sample. Af-
ter checking autocorrelation of thinning simulated sample, we draw histogram of 𝛽0, 𝛽1 and
𝜙. Histogram of conditional posterior distribution of 𝛽0 and 𝛽1 of normal distribution and
conditional posterior distribution of 𝜙 is inverse gamma distribution approximated using the
posterior means of 𝛽0 and 𝛽1. Population parameters are fall within the credible interval of
posterior distribution 𝛽0, 𝛽1 and 𝜙. In developing the Gibbs sampling algorithm for Bayesian
regression, we have used the inbuilt function rnorm and rinvgamma from R base and invgamma
package respectively. However by virtue of the probability integral transform both of them
can be simulated from uniform random number.

beta_0 = 3 # population intercept
beta_1 = 1 # population slope
phi = 1 # population error variance
x = seq(1, 5, length.out = 50) # fixation of the population parameter
set.seed(123) # we fixing a randomness in output
y = beta_0 + beta_1 * x + rnorm(length(x), 0, sqrt(phi))
data = data.frame(y, x) # data containing population size
plot(x,y, col = "red", pch = 19)
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Figure 3.1: Plot of simulated data for the study of linear regression generated using the model
𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝒩(mean = 0, sd = √𝜙), 𝑖 ∈ {1, 2, ⋯ , 𝑛}. The parameters values
are fixed as 𝛽0 = 3, 𝛽1 = 1, 𝜙 = 1, and generated data of length 𝑛 = 50.

In the above code the population parameters have been fixed for simulation purpose. The
parameters are set as 𝛽0 = 3, 𝛽1 = 1 and 𝜙 = 1. The seed has been fixed so that the results
can be reproduced later as well. The reader is encouraged to run the complete code step by
step rather than running it completely in a single step. In the following section, we specify
the prior distribution for the model parameters.

# Prior for beta_0
mu_0 = 2; tau_0 = 0.4 # prior parameter
prior_beta_0 = function(x){ # function for prior beta_1
dnorm(x, mean = mu_0, sd = sqrt(tau_0))

}

# Prior for beta_1
mu_1 = 2; tau_1 = 0.5 # prior parameter
prior_beta_1 = function(x){ # function for prior beta_1
dnorm(x, mean = mu_1, sd = sqrt(tau_1))

}
# Prior for phi.
library(invgamma) #
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alpha = 2; gamma = 2 # prior parameters
prior_phi = function(x){ # function for prior phi
dinvgamma(x, shape = alpha, rate = gamma)

}

The following code describes the likelihood function. Recall that to compute the posterior we
have to multiply the likelihood function with the prior distribution. So, here we write separate
function for the likelihood function. The likelihood function is the joint distribution of the
data values where the parameters are considered as variable. Also, note that the function
directly compute the log-likelihood; this is is helpful to avoid truncation errors made by the
software.

likelihood = function(data, params){ # likelihood function of data given parameters
y = data[,1]
x = data[,2]
n = nrow(data)
beta_0 = params[1]
beta_1 = params[2]
phi = params[3]
log_lik = -n*log(sqrt(2*pi)) - (n/2)*log(phi) - sum((y - beta_0-beta_1*x)^2)/(2*phi)
# log-likelihood of data given parameters
return(exp(log_lik))

}

The following codes are self explanatory. Sufficient comments have been included. Note that
we have created the grid values by dividing an interval with a step size of 0.01. Choice of this
interval plays critical role for a successful grid approximation. This interval is essentially act
as a support for the posterior distribution of the designated parameter. The simulation would
start with an initial choice of the parameters 𝛽(0)

0 , 𝛽(0)
1 and 𝜙(0) which have been simulated

from the prior distribution.

# storage for posterior samples
iteration = 100000 # number of iterations
post_beta_0 = rep(NA, iteration) # storage for posterior of beta_0
post_beta_1 = rep(NA, iteration) # storage for posterior of beta_1
post_phi = rep(NA, iteration) # storage for posterior of phi
# Specification of grids
step = 0.01 # grid step
grid_beta_0 = seq(from = -5, to = 10, by = step) # fixation of the grid of beta_0
grid_beta_1 = seq(from = -5, to = 5, by = step) # fixation of the grid of beta_1
# Initialization of the posterior samples
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post_beta_0[1] = rnorm(1, mean = mu_0, sd = sqrt(tau_0)) # posterior beta_0
post_beta_1[1] = rnorm(1, mean = mu_1, sd = sqrt(tau_1)) # posterior beta_1
post_phi[1] = rinvgamma(n = 1, shape = alpha, rate = gamma)# posterior phi

The following codes give the code for Gibbs sampling method to generate the posterior distri-
bution from the marginal posterior distribution. In the text, it has been mentioned that we
do not have idea about the joint posterior distribution of the parameters, so we simulate from
the marginal posterior distribution. Since, the exact functional form of the marginal posterior
is also not known, we approximate it by using grid approximation.

for(i in 2:iteration){

# section for posterior sample of beta_0
tmp_post_beta_0 = rep(NA, length(grid_beta_0))
for(j in 1:length(grid_beta_0)){

params = c(grid_beta_0[j], post_beta_1[i-1], post_phi[i-1])
tmp_post_beta_0[j] = likelihood(data = data, params = params)

* prior_beta_0(grid_beta_0[j])
}
prob = tmp_post_beta_0/sum(tmp_post_beta_0)
post_beta_0[i] = sample(grid_beta_0, 1, prob = prob) # sample of posterior
beta_0 after normalize

# section for posterior sample of beta_1
tmp_post_beta_1 = rep(NA, length(grid_beta_1))
for(j in 1:length(grid_beta_1)){

params = c(post_beta_0[i], grid_beta_1[j], post_phi[i-1])
tmp_post_beta_1[j] = likelihood(data = data, params= params)

* prior_beta_1(grid_beta_1[j])
}
prob = tmp_post_beta_1/(sum(tmp_post_beta_1))
post_beta_1[i] = sample(grid_beta_1, 1, prob = prob) # sample of posterior
beta_1 after normalize

# section for posterior sample of phi
shape = alpha + nrow(data)/2
rate = (1/2)*sum((y - post_beta_0[i] - post_beta_1[i]*x)^2) + gamma
post_phi[i] = rinvgamma(1, shape = shape, rate = rate) # sample of posterior phi

}

Trace plots are useful tools to convergence of the chains which are expected to converge the
posterior distribution. After an initial burn in period, the values would act as samples from
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the target (desired posterior) distribution. In the following we have considered first 70% of
the simulated values as the burn in step. There is no hard and fast rule for it.

# Trace plots
par(mfrow = c(2,2))
# trace plot of posterior of beta_0
plot(post_beta_0, type = "l", main = bquote("Trace plot of"~ beta[0]),col = "red")
# trace plot of posterior of beta_1
plot(post_beta_1, type = "l", main = bquote("Trace plot of"~ beta[1]),col = "red")
# trace plot of posterior of phi
plot(post_phi, type = "l", main = bquote("Trace plot of"~ phi),col = "red")

It is important to note that simulation of 𝛽(𝑗)
0 depends on the value of 𝛽(𝑗−1)

0 . Similarly for other
parameters as well. Thus, the posterior values are identically distributed (after a sufficiently
large step) but not independent. So, the test for autocorrelation has been performed as the
values have been selected accordingly. For example, we may consider every 10th values after
the burn in period. This is also known as thinning. The function acf() has been utilized for
this purpose.

# Plot of conditional posterior density functions of beta_0, beta_1, phi
cut = 0.7 # for cutting starting 70% sample
par(mfrow = c(2,3))

# Section for plot acf of posterior beta_0
u = post_beta_0[ceiling(iteration*cut):iteration] # after burn-in period
index = seq(1,length(u), by = 16) # thining
post_beta_b0_thinning = u[index] # values after thinning
acf(post_beta_b0_thinning,main = bquote("acf of posterior "~beta[0])) #checking autocorrelation

# Section for plot acf of posterior beta_1
u = post_beta_1[ceiling(iteration*cut):iteration] # after burn-in period
index = seq(1,length(u), by = 16) # thinning
post_beta_b1_thinning = u[index] # values after thinnig
acf(post_beta_b1_thinning,main = bquote("acf of posterior "~beta[1]))# checking autocorrelation

# Section for plot acf of posterior phi
u = post_phi[ceiling(iteration*cut):iteration] # after burn-in period
index = seq(1,length(u), by = 3) # thinning
post_phi_thinning = u[index] # values after thinning
acf(post_phi_thinning,main = bquote("acf of posterior "~phi)) # checking autocorrelation

After the thinning has been done, we visualize the approximated distribution by means of
histogram. As we can see that the posterior density of 𝛽0 and 𝛽1 can be well approximated
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by the normal distribution. The posterior density of 𝜙 is positively skewed and can be well
approximated by the inverted gamma density function. This is due to conjugacy which has
been mentioned earlier. The exact posterior density for 𝜙 has been computed using the mean
of the posterior samples of 𝛽0 and 𝛽1.

# Section for plot histogram of posterior beta_0 after thinning
hist(post_beta_b0_thinning, probability = TRUE,

main = bquote(" Posterior of "~ beta[0]),
xlab = expression(beta[0]),col = "grey")

credible_interval_beta_0 = quantile(post_beta_b0_thinning, c(2.5, 97.5)/100)
abline(v = credible_interval_beta_0,col = "blue",lwd = 2)
legend("topright",legend = "Credible Interval",lwd =2,col = "blue",lty = 2,cex = 0.5)

# Section for plot histogram of posterior beta_1 after thinning
hist(post_beta_b1_thinning,probability = TRUE,

main = bquote("Posterior of "~beta[1]),
col = "grey",xlab = expression(beta[1]))

credible_interval_beta_1 = quantile(post_beta_b1_thinning, c(2.5, 97.5)/100)
abline(v = credible_interval_beta_1, col = "blue", lwd = 2)
legend("topright",legend = "Credible Interval",lwd =2,col = "blue",lty = 2,cex = 0.5)

# Section for plot histogram of posterior phi after thinning
hist(post_phi_thinning, probability = TRUE,

main = bquote("psterior of "~ phi),
col ="grey",ylim = c(0,3), xlab = expression(phi))

credible_interval_phi = quantile(post_phi_thinning, c(2.5, 97.5)/100)
abline(v=credible_interval_phi,col = "blue",lwd = 2)
legend("topright",legend = c("Credible Interval","True curve of phi"),

lwd = c(2,2), col = c("blue","red"), lty = 2, cex = 0.5)

# Approximating the posterior distribution of phi using the posterior means of beta_0 and beta_1
mean_post_beta_0 = mean(post_beta_b0_thinning)
mean_post_beta_1 = mean(post_beta_b1_thinning)
shape = alpha + nrow(data)/2
rate = (1/2)*sum((y - mean_post_beta_0 - mean_post_beta_1*x)^2) + gamma
curve(dinvgamma(x, shape = shape, rate = rate),add = TRUE, lwd=2, col = "red")
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Figure 3.2: Trace plot of posterior 𝛽0, 𝛽1 and 𝜙.

Up to this point, we have developed a clear understanding of linear regression from scratch
under the Bayesian framework and demonstrated it on simulated data for better compre-
hension. The Bayesian estimation of the linear regression parameters has been conducted
using custom-written code, without relying on any R packages. This approach provides a
transparent view of the underlying processes. Once the mechanism is well understood, the
same analysis can be performed using built-in packages. Some of the packages available in R
for Bayesian linear regression are rstanarm (Goodrich et al. 2024), and brms (Bürkner 2017).
The rstanarm package provides a user-friendly interface to fit Bayesian models using Stan,
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while brms extends this by allowing complex model structures using formula syntax.
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4 Bayesian Estimation to Nonlinear Regression
Problem

Let 𝑁(𝑡) denotes the population size at time 𝑡. 𝑁(𝑡) is assumed to be a continuously differen-
tiable function of 𝑡. Let the dynamics of the population is governed by the 𝜃-logistic growth
equation

d𝑁(𝑡)
d𝑡 = 𝑟𝑚𝑁(𝑡) [1 − (𝑁(𝑡)

𝐾 )
𝜃
] , 𝑁(0) = 𝑁0, (4.1)

where 𝑟𝑚 is the intrinsic growth rate of the population, 𝜃 is the curvature parameter depicting
the shape of the per capita growth rate (PGR) and population density; 𝐾 is the carrying
capacity of the environment. For 𝜃 = 1, we get the logistic growth function, which is a
linearly decreasing function of 𝑁 . For 𝜃 < 1 and 𝜃 > 1, the PGR-density relationship is
concave upward and concave downward, respectively. The equation (4.1) is a Bernoulli type
differential equation whose solution is given by the following:

𝑁(𝑡) = 𝐾

{1 + [( 𝐾
𝑁0

)𝜃 − 1] 𝑒−𝑟𝑚𝑡𝜃}
1
𝜃

. (4.2)

It is easy to verify that as 𝑡 → ∞, 𝑁(𝑡) → 𝐾. In ecological literature, demographic and
environmental variations are main source of stochastic population changes. If the population is
subject to the environmental noise alone then the corresponding diffusion equation is described
in the form of It ̂o stochastic differential equation (SDE) as

d𝑁(𝑡) = 𝑟𝑁(𝑡) [1 − (𝑁(𝑡)
𝐾 )

𝜃
]d𝑡 + 𝜎𝑒𝑁(𝑡)d𝑊(𝑡). (4.3)

If the dynamics of the population is subject to the demographic variation only, then the growth
dynamics is governed by

d𝑁(𝑡) = 𝑟𝑁(𝑡) [1 − (𝑁(𝑡)
𝐾 )

𝜃
]d𝑡 + 𝜎𝑑√𝑁(𝑡)d𝑊(𝑡), (4.4)
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𝜎2
𝑑 and 𝜎2

𝑒 are the demographic and environmental variances, respectively. {𝑊(𝑡), 𝑡 ≥ 0} is the
standard Brownian motion, so that d𝑊(𝑡) ∼ 𝒩(0, d𝑡). We consider the population dynamics
to be subjected to environmental stochasticity only. We seek to estimate the model parameters
by using the maximum likelihood estimation method. To do that we first simulate the data
following the above model using some assumed values of the parameters. The equation (4.4)
can be described as follows,

𝑁(𝑡 + Δ𝑡) − 𝑁(𝑡) = 𝑟𝑁(𝑡) [1 − (𝑁(𝑡)
𝐾 )

𝜃
] Δ𝑡 + 𝜎𝑒𝑁(𝑡) [𝑊(𝑡 + Δ𝑡) − 𝑊(𝑡)] . (4.5)

We have {𝑡0, 𝑡1, ⋯ , 𝑡𝑛} be 𝑛+1 time points with 𝑁(𝑡0) = 𝑋0, which is fixed. 𝑊(𝑡+Δ𝑡)−𝑊(𝑡)
is the Brownian motion with mean 0 and variance Δ𝑡. The simulation is carried out in the
following way: The conditional distribution of 𝑁(𝑡 + Δ𝑡) given 𝑁(𝑡) is given by a normal
distribution with mean 𝑁(𝑡) + 𝑟𝑁(𝑡) [1 − (𝑁(𝑡)

𝐾 )
𝜃
] Δ𝑡 and variance 𝜎2

𝑒𝑁(𝑡)2Δ𝑡 and notionally
can be written as follows:

𝑁(𝑡 + Δ𝑡) − 𝑁(𝑡)|𝑁(𝑡) ∼ 𝒩 (𝑟𝑁(𝑡) [1 − (𝑁(𝑡)
𝐾 )

𝜃
] Δ𝑡, 𝜎2

𝑒𝑁(𝑡)2Δ𝑡) . (4.6)

We fixed 𝑡0 = 0 and Δ𝑡 = 0.1. Let 𝑁𝑡0
, 𝑁𝑡1

, … , 𝑁𝑡𝑛
are the 𝑛+1 population sizes are generated

using the above rule. The likelihood function ℒ(𝛽) of the sample 𝑁0, 𝑁1, 𝑁2, ⋯, 𝑁𝑛 is the joint
density of the observations treated as a function of the parameter 𝛽. The method of maximum
likelihood provides as estimate of 𝛽 any value �̂� which maximizes ℒ. Note that {𝑁𝑡𝑖

}𝑛
𝑖=0 are

not independent but the differences are assumed to be independent, So the likelihood function
can be written as

ℒ = 𝑓 (𝑁1, 𝑁2, … , 𝑁𝑛|𝑁0; 𝑟, 𝐾, 𝜃, 𝜎𝑒)
= 𝑓 (𝑁1, 𝑁2, … , 𝑁𝑛|𝑁0; 𝛽)
= 𝑓 (𝑁𝑛|𝑁𝑛−1, … , 𝑁0; 𝛽) 𝑓 (𝑁𝑛−1|𝑁𝑛−2, … , 𝑁0; ̃𝛽) … 𝑓 (𝑁1|𝑁0; ̃𝛽)

=
𝑛

∏
𝑖=1

𝑓 (𝑁𝑖|𝑁𝑖−1 … , 𝑁0; 𝛽)

=
𝑛

∏
𝑖=1

𝑓 (𝑁𝑖|𝑁𝑖−1; 𝛽)

=
𝑛

∏
𝑖=1

1√
2𝜋𝜎𝑒𝑁𝑖−1√Δ𝑡𝑖

𝑒− 1
2𝜎2𝑒

Σ𝑛
𝑖=1( 𝑁𝑖−𝜇𝑁𝑖−1

𝑁𝑖−1 )
2

= 1√
2𝜋𝑛(𝜎𝑒)𝑛(∏𝑛

𝑖=1 𝑁𝑖−1√Δ𝑡𝑖)
𝑒− 1

2𝜎2𝑒
Σ𝑛

𝑖=1( 𝑁𝑖−𝜇𝑁𝑖−1
𝑁𝑖−1

)
2
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where 𝜇𝑁𝑖
= 𝑁(𝑡𝑖) + 𝑟𝑁(𝑡𝑖) [1 − (𝑁(𝑡𝑖)

𝐾 )
𝜃
] Δ𝑡. The log-likelihood function is given by

𝑙(𝛽) = logℒ(𝛽) (4.7)

= −𝑛 ln
√

2𝜋 − 𝑛 ln𝜎𝑒 − ln
𝑛

∏
𝑖=1

(𝑁𝑖−1√Δ𝑡𝑖) − 1
2𝜎2𝑒

𝑛
∑
𝑖=1

(
𝑁𝑖 − 𝜇𝑁𝑖−1

𝑁𝑖−1
)

2
(4.8)

= −𝑛 ln(
√

2𝜋) − 𝑛 ln𝜎𝑒 −
𝑛

∑
𝑖=1

ln√Δ𝑡𝑖 −
𝑛

∑
𝑖=1

ln(𝑁𝑖−1) − 1
2𝜎2𝑒

𝑛
∑
𝑖=1

⎡⎢⎢
⎣

𝑁𝑖 − 𝑁𝑖−1 − 𝑟𝑁𝑖−1 [1 − (𝑁𝑖−1
𝐾 )𝜃] Δ𝑡𝑖

𝑁𝑖−1

⎤⎥⎥
⎦

2

(4.9)

4.1 Estimation of Parameters

Consider {𝑁1, 𝑁2, ⋯ , 𝑁𝑛+1} be the observed time series data. The absolute change in popu-
lation size at time 𝑡 is approximated as

d𝑁(𝑡)
d𝑡 ≈ 𝑁(𝑡 + Δ𝑡) − 𝑁(𝑡)

Δ𝑡 .

We assume the yearly changes in population size, so that Δ𝑡 = 1. The relative changes in
population sizes is given by

𝑅(𝑡) = 1
𝑁

d𝑁(𝑡)
d𝑡 = d

d𝑡 log𝑁 ≈ log𝑁(𝑡 + 1) − log𝑁(𝑡). (4.10)

So, for a given population time series data of size 𝑛 + 1, we have 𝑛 many observed per
capita growth rates {𝑅(1), 𝑅(2), ⋯ , 𝑅(𝑛)}. We would like to investigate the dynamics of the
population when it is subject to environmental stochastic perturbations alone. The following
stochastic differential equation has been used to describe to population changes that is exposed
to environmental variability.

d𝑁 = 𝑟𝑚𝑁(𝑡) [1 − (𝑁(𝑡)
𝐾 )

𝜃
]d𝑡 + 𝜎𝑒𝑁(𝑡)d𝑊(𝑡), (4.11)

where 𝜎𝑒 represents the intensity of the stochastic perturbation and 𝑊(𝑡) is the one dimensional
Brownian motion which satisfies d𝑊(𝑡) ≈ 𝑊(𝑡+d𝑡)−𝑊(𝑡) ∼ 𝒩(0, d𝑡). Our goal is to estimate
the parameters of the stochastic model by employing Bayesian statistical methods. First we
compute the likelihood function of the model parameters given the population size. It is to
be noted that the likelihood function can be written either by conditional on the population
size {𝑁𝑡} or on the growth rates {𝑅𝑡}. We can use the either observations on {𝑅𝑡} or {𝑁𝑡}
to obtain the posterior distribution of the model parameters. Now, we shall write down the

46



likelihood function given the population time series. Using the equation (4.11) and utilizing the
distributional assumptions, we see that the absolute changes in the population size, conditional
on the current size, is normally distributed. So we obtain the following (assuming Δ𝑡 = 1):

𝑁(𝑡 + 1) − 𝑁(𝑡)|𝑁(𝑡) ∼ 𝒩 (𝑟𝑚𝑁(𝑡) [1 − (𝑁(𝑡)
𝐾 )

𝜃
] , 𝜎2

𝑒𝑁(𝑡)2)

𝑁(𝑡 + 1) − 𝑁(𝑡)
𝑁(𝑡) |𝑁(𝑡) ∼ 𝒩 (𝑟𝑚 [1 − (𝑁(𝑡)

𝐾 )
𝜃
] , 𝜎2

𝑒)

𝑁(𝑖 + 1) − 𝑁(𝑖) ∼ 𝒩 (𝑟𝑚𝑁(𝑖) [1 − (𝑁(𝑖)
𝐾 )

𝜃
] , 𝜎2

𝑒𝑁(𝑖)2)

𝑁(𝑖 + 1)|𝑁(𝑖) ∼ 𝒩 (𝑁(𝑖) + 𝑟𝑚𝑁(𝑖) [1 − (𝑁(𝑖)
𝐾 )

𝜃
] , 𝜎2

𝑒𝑁(𝑖)2) (4.12)

We can estimate the parameters using (4.12) using the method of maximum likelihood. There-
fore by using (4.12), our goal is to estimate parameters 𝑟𝑚, 𝜃, 𝐾, 𝜎2

𝑒 . If we use 𝑅𝑡 values, then
the following equation will be used for computation of the likelihood.

𝑅(𝑡)|𝑁(𝑡) ∼ 𝒩 (𝑟𝑚 [1 − (𝑁(𝑡)
𝐾 )

𝜃
] , 𝜎2

𝑒) , (4.13)

so that the log-likelihood function will be,

likelihood = −𝑛
2 log(2𝜋) − 𝑛

2 log(𝜎2
𝑒) − 1

2𝜎2𝑒

𝑛
∑
𝑖=1

{𝑅(𝑖) − 𝑟𝑚 [1 − (𝑁(𝑖)
𝐾 )

𝜃
]}

2

. (4.14)

To draw inference about 𝑟𝑚, 𝜃, 𝐾 and 𝜎2
𝑒 , we consider inverted gamma prior for variance

term 𝜎2
𝑒 , gamma prior for 𝜃, normal prior for 𝐾 and normal prior for 𝑟𝑚. Then the complete

Bayesian model for this data can be written as,

𝑁(𝑖 + 1)|𝑁(𝑖), 𝑟𝑚, 𝜃, 𝐾, 𝜎2
𝑒 ∼ 𝒩 (𝑁(𝑖) + 𝑟𝑚𝑁(𝑖) [1 − (𝑁(𝑖)

𝐾 )
𝜃
] , 𝜎2

𝑒𝑁(𝑖)2)

𝑟𝑚|𝛼0, 𝛽0 ∼ 𝒩(𝛼0, 𝛽0)
𝐾|𝜇𝐾, 𝜎2

𝐾 ∼ 𝒩(𝜇𝐾, 𝜎2
𝐾)

𝜃|𝛼1, 𝛽1 ∼ 𝒢(𝛼1, 𝛽1)
𝜎2

𝑒 |𝛼2, 𝛽2 ∼ ℐ𝒢(𝛼2, 𝛽2),

47



where 𝛼0, 𝛼1, 𝛼2, 𝛽0, 𝛽1, 𝛽2, 𝜇𝐾, and 𝜎2
𝐾 are hyper-parameters and assumed to be known. As

the starting population size is known, 𝑃(𝑁(1) = 𝑁0) = 1. We take 𝑁(1) = 𝑁0 as the
starting population size and assumed to be a fixed quantity. The joint posterior distribution
of 𝑟𝑚, 𝜃, 𝐾, 𝜎2

𝑒 can be written as,

𝑓(𝑟𝑚, 𝜃, 𝐾, 𝜎2
𝑒 |𝑁) = 𝑓(𝑁, 𝑟𝑚, 𝜃, 𝐾, 𝜎2

𝑒)
𝑓𝑁 (𝑁) ,

where 𝑁 = (𝑁(1), 𝑁(2), ⋯ , 𝑁(𝑛 + 1))′ represents the data and 𝑓𝑁 (𝑁) is the marginal distri-
bution of 𝑁 .

𝑓 (𝑟𝑚, 𝜃, 𝐾, 𝜎2
𝑒 |𝑁) = 𝑓 (𝑁|𝑟𝑚, 𝜃, 𝐾, 𝜎2

𝑒) ⋅ 𝑓 (𝑟𝑚, 𝜃, 𝐾, 𝜎2
𝑒)

𝑓(𝑁) . (4.15)

We assume that 𝑟𝑚, 𝜃, 𝐾, 𝜎2
𝑒 are independent variables, therefore 𝑓(𝑟𝑚, 𝜃, 𝐾, 𝜎2

𝑒) can be written
as,

𝑓 (𝑟𝑚, 𝜃, 𝐾, 𝜎2
𝑒) = 𝑓(𝑟𝑚) ⋅ 𝑓(𝜃) ⋅ 𝑓(𝐾) ⋅ 𝑓 (𝜎2

𝑒) . (4.16)

So, equation (4.15) becomes,

𝑓 (𝑟𝑚, 𝜃, 𝐾, 𝜎2
𝑒 |𝑁) ∝ 𝑓 (𝑁|𝑟𝑚, 𝜃, 𝐾, 𝜎2

𝑒) ⋅ 𝑓 (𝑟𝑚, 𝜃, 𝐾, 𝜎2
𝑒)

∝ 𝑓(𝑁|𝑟𝑚, 𝜃, 𝐾, 𝜎2
𝑒) ⋅ 𝑓(𝑟𝑚) ⋅ 𝑓(𝜃) ⋅ 𝑓(𝐾) ⋅ 𝑓(𝜎2

𝑒) [independence of priors]

∝ [
𝑛

∏
𝑖=1

𝑓 (𝑁(𝑖 + 1)|𝑁(𝑖))] ⋅ 𝑓(𝑟𝑚) ⋅ 𝑓(𝜃) ⋅ 𝑓(𝐾) ⋅ 𝑓(𝜎2
𝑒).

The right hand side of the above expression is product of the likelihood and the prior, which
is nothing but unnormalized joint posterior distribution of parameters. Since, the distribution
does not follow some common known distribution, we use the Gibbs sampling method that
simulates samples from the conditional distribution. So we generate random sample from
conditional posterior distribution of each parameters. However, it is observed that in this
case also the conditional posterior does not follow any known distribution. So, we use grid
approximation algorithm to approximate the posterior probability distribution.

Let 𝛽 = (𝑟𝑚, 𝜃, 𝐾, 𝜎2
𝑒). Since, 𝑁(𝑖)’s are not independent, so the likelihood can be written

as,

likelihood = 𝑓 (𝑁(1), 𝑁(2), ⋯ , 𝑁(𝑛 + 1); 𝛽)
= 𝑓 (𝑁(𝑛 + 1)|𝑁(𝑛); 𝛽) ⋅ 𝑓 (𝑁(𝑛)|𝑁(𝑛 − 1); 𝛽) ⋯ 𝑓 (𝑁(2)|𝑁(1); 𝛽) ⋅ 𝑓 (𝑁(1); 𝛽)

=
𝑛

∏
𝑖=1

𝑓 (𝑁(𝑖 + 1)|𝑁(𝑖); 𝛽) ⋅ 𝑓 (𝑁(1); 𝛽) .
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We assume that the initial population size to be known so that 𝑓 (𝑁(1); 𝛽) = 1.

likelihood =
𝑛

∏
𝑖=1

𝑓 (𝑁(𝑖 + 1)|𝑁(𝑖); 𝛽)

=
𝑛

∏
𝑖=1

⎡⎢⎢
⎣

1√
2𝜋𝜎2𝑒𝑁(𝑖)𝑒−

{𝑁(𝑖+1)−𝑁(𝑖)−𝑟𝑚𝑁(𝑖)[1−( 𝑁(𝑖)
𝐾 )

𝜃
]}

2

2𝜎2𝑒𝑁(𝑖)2
⎤⎥⎥
⎦

=
𝑛

∏
𝑖=1

[ 1√
2𝜋𝜎2𝑒𝑁(𝑖)𝑒− 1

2𝜎2𝑒
{ 𝑁(𝑖+1)−𝑁(𝑖)

𝑁(𝑖) −𝑟𝑚[1−( 𝑁(𝑖)
𝐾 )

𝜃
]}

𝜃

]

= 1
(
√

2𝜋)𝑛
1

(𝜎𝑒)𝑛
1

∏𝑛
𝑖=1 𝑁(𝑖)𝑒− 1

2𝜎2𝑒
∑𝑛

𝑖=1{𝑅(𝑖)−𝑟𝑚[1−( 𝑁(𝑖)
𝐾 )

𝜃
]}

2

.

The log-likelihood can be given as,

log-likelihood = −𝑛
2 log(2𝜋)−𝑛

2 log(𝜎2
𝑒)−

𝑛
∑
𝑖=1

log(𝑁(𝑖))− 1
2𝜎2𝑒

𝑛
∑
𝑖=1

{𝑅(𝑖) − 𝑟𝑚 [1 − (𝑁(𝑖)
𝐾 )

𝜃
]}

2

.

(4.17)

To compute the conditional posterior following process has been carried out,

𝑓(𝑟𝑚|𝜃, 𝐾, 𝜎2
𝑒 , 𝑁) = 𝑓(𝑁, 𝑟𝑚, 𝜃, 𝐾, 𝜎2

𝑒)
𝑓(𝜃, 𝐾, 𝜎2𝑒 , 𝑁)

= 𝑓(𝑁|𝑟𝑚, 𝜃, 𝐾, 𝜎2
𝑒) ⋅ 𝑓(𝑟𝑚, 𝜃, 𝐾, 𝜎2

𝑒)
𝑓(𝑁, 𝜃, 𝐾, 𝜎2𝑒)

= 𝑓(𝑁|𝑟𝑚, 𝜃, 𝐾, 𝜎2
𝑒) ⋅ 𝜋(𝑟𝑚)𝜋(𝜃)𝜋(𝐾)𝜋(𝜎2

𝑒)
𝑓(𝑁|𝜃, 𝐾, 𝜎2𝑒) ⋅ 𝑓(𝜃, 𝐾, 𝜎2𝑒)

= 𝑓(𝑁|𝑟𝑚, 𝜃, 𝐾, 𝜎2
𝑒) ⋅ 𝜋(𝑟𝑚) ⋅ 𝜋(𝜃) ⋅ 𝜋(𝐾) ⋅ 𝜋(𝜎2

𝑒)
𝑓(𝑁|𝜃, 𝐾, 𝜎2𝑒) ⋅ 𝜋(𝜃) ⋅ 𝜋(𝐾) ⋅ 𝜋(𝜎2𝑒)

= 𝑓(𝑁|𝑟𝑚, 𝜃, 𝐾, 𝜎2
𝑒) ⋅ 𝜋(𝑟𝑚)

𝑓(𝑁|𝜃, 𝐾, 𝜎2𝑒) .

Let 𝑚 = 𝑓(𝑁|𝜃, 𝐾, 𝜎2
𝑒), be the joint marginal probability density function of the data.

𝑓(𝑟𝑚|𝜃, 𝐾, 𝜎2
𝑒 , 𝑁) ∝ 𝑓(𝑁|𝑟𝑚, 𝜃, 𝐾, 𝜎2

𝑒) ⋅ 𝜋(𝑟𝑚)

∝
𝑛

∏
𝑖=1

𝑓(𝑁𝑖+1|𝑁𝑖; 𝑟𝑚, 𝜃, 𝐾, 𝜎2
𝑒) ⋅ 𝜋(𝑟𝑚). (4.18)
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Similarly,

𝑓(𝜃|𝑟𝑚, 𝐾, 𝜎2
𝑒 , 𝑁) ∝

𝑛
∏
𝑖=1

𝑓(𝑁𝑖+1|𝑁𝑖; 𝑟𝑚, 𝜃, 𝐾, 𝜎2
𝑒) ⋅ 𝜋(𝜃) (4.19)

𝑓(𝐾|𝑟𝑚, 𝜃, 𝜎2
𝑒 , 𝑁) ∝

𝑛
∏
𝑖=1

𝑓(𝑁𝑖+1|𝑁𝑖; 𝑟𝑚, 𝜃, 𝐾, 𝜎2
𝑒) ⋅ 𝜋(𝐾) (4.20)

𝑓(𝜎2
𝑒 |𝑟𝑚, 𝜃, 𝐾, 𝑁) ∝

𝑛
∏
𝑖=1

𝑓(𝑁𝑖+1|𝑁𝑖; 𝑟𝑚, 𝜃, 𝐾, 𝜎2
𝑒) ⋅ 𝜋(𝜎2

𝑒). (4.21)

In Bayesian linear regression we already verify that the variance (specially 𝜙) after observed
data follows ℐ𝒢 (shape = 𝛼 + 𝑛

2 , rate = 1
2 ∑𝑛

𝑖=1 (𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖)
2 + 𝛾). Similarly here we ex-

pect posterior distribution of variance(𝜎2
𝑒) as follows:

𝜎2
𝑒 |𝑁 ∼ ℐ𝒢 ⎛⎜

⎝
shape = 𝛼2 + 𝑛

2 , rate = 1
2

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑟𝑚 {1 − (𝑁(𝑡)
𝐾 )

𝜃
})

2

+ 𝛽2
⎞⎟
⎠

. (4.22)

Note

If the prior distribution 𝜋(𝑟𝑚) is considered to be gammma(𝛼, 𝛽) which takes only positive
values, then task of estimation of a declining population may be underestimated.

Note

To reduce the computational time a correct choice of priors is required. In this case, since
𝐾 is a property of the environment, it should not change drastically. Posterior sample
of k should not vary too much away from the prior mean of 𝐾.

Note

If the prior distribution 𝜋(𝑟𝑚) is considered to be gamma(𝛼, 𝛽) which takes only positive
values, then the task of estimation of a declining population may be underestimated.

Note

To reduce the computational time, a correct choice of priors is required. In this case,
since 𝐾 is a property of the environment, it should not change drastically. The posterior
sample of 𝐾 should not vary too much from the prior mean of 𝐾.
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The above structure of the posterior density function of 𝜎2
𝑒 given in the equation (4.22) is

verified by the simulation for the simulated data.

4.2 Simulation study

4.2.1 Data Generation

Time series data of population size is generated using 𝑟𝑚 = 0.5, 𝜃 = 0.5, 𝐾 = 50, 𝜎2
𝑒 =

0.0025. The initial population size is set as 𝑁0 = 23 and the length of the simulated series is
𝑛 = 30. The full Bayesian model is described as follows:

𝑅(𝑡)|𝑁(𝑡) ∼ 𝒩 (𝑟𝑚 [1 − (𝑁(𝑡)
𝐾 )

𝜃
] , 𝜎2

𝑒) (4.23)

𝑟𝑚|𝛼0, 𝛽0 ∼ 𝒩(𝛼0, 𝛽0)
𝐾|𝜇𝐾, 𝜎2

𝐾 ∼ 𝒩(𝜇𝐾, 𝜎2
𝐾)

𝜃|𝛼1, 𝛽1 ∼ 𝒢(𝛼1, 𝛽1)
𝜎2

𝑒 |𝛼2, 𝛽2 ∼ ℐ𝒢(𝛼2, 𝛽2).

# parameters values for simulating the data
rm = 0.5 # intrinsic growth rate
theta = 0.5 # parameter for strength of density dependence
K = 50 # carrying capacity of the environment
sig_2e = 0.0025 # variance of the environmental perturbation
n = 30 # length of the time series = n+1
N1 = 23 # initial population size

set.seed(471)
N = numeric(n + 1) # storage the simulated time series
N[1] = N1 # initial population size.
for(i in 1:(length(N)-1)){
r = rnorm(n =1, mean = rm*(1-(N[i]/K)^theta), sd = sqrt(sig_2e)) # simulating growth rate
N[i+1] = N[i]*exp(r) # simulate next generation

}
#print(N) # printing population size
plot(1:(n+1), N, type= "p", lwd=2, col = "red", pch = 19)

fun_logistic = function(x){ # Deterministic solution of the generalized logistic equation
K/(1+((K/N1)^theta-1 )*exp(-rm*x*theta) )^(1/theta)
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}
curve(fun_logistic, 0, n+1, add= TRUE, lwd=2)

0 5 10 15 20 25 30

25
35

45
55

1:(n + 1)

N

Figure 4.1: Plot of simulated data for the study of Nonlinear regression generated using the
model given in the equation (4.23). The parameters values are fixed as 𝑟𝑚 =
0.5, 𝜃 = 0.5, 𝐾 = 50, 𝜎2

𝑒 = 0.0025, and initial population size taken as 𝑁0 = 23,
generated data of length 𝑛 = 30.

4.2.2 Define Prior distributions

For generated time series, we want to generate values from posterior of each parameter(𝑟𝑚, 𝐾, 𝜃, 𝜎2
𝑒).

For simulation purpose, we first define the prior functions for the prior distribu-
tion given in the equation (4.23) by considering the values of hyper-parameters as
𝛽0 = 1, 𝜎2

𝐾 = 3, 𝛼1 = 1, 𝛽1 = 1, 𝛼2 = 1, 𝛽2 = 0.0001. Prior mean of 𝐾 and 𝑟𝑚 that is 𝜇𝐾 and
𝛼0 are obtained by fitting the logistic growth equation using nonlinear least squares method
(nls, in R). The package invgamma (Kahle and Stamey 2017) has been used for generating
random numbers from the inverted gamma distribution.

prior_mean_rm = coef(fit)[1]
prior_sd_rm = 1
fun_prior_rm = function(x){ # Prior specification for r_m
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dnorm(x, prior_mean_rm, prior_sd_rm)
}

prior_mean_K = coef(fit)[2]
prior_sd_K = 3
fun_prior_K = function(x){ # Prior specification for K
dnorm(x, prior_mean_K, prior_sd_K)

}

alpha_1 = 1
beta_1 = 1
fun_prior_theta = function(x){ # Prior specification for theta
dgamma(x, shape = alpha_1, rate = beta_1)

}

library(invgamma)
alpha_2 = 1
beta_2 = 0.0001
fun_prior_sig_2e = function(x){ # Prior specification for inverted gama
dinvgamma(x, shape = alpha_2, rate = beta_2)

}

As mentioned in the Section 4.1, the exact form of the conditional posterior distribution is
not known, so grid approximation has been utilized to approximate the conditional posterior
density function. In the following code, we have created grid within an interval specified
for each parameter. This initial choice is important as this act as a support for the density
function. Finer the grid is more accurate is the posterior approximation.

# Specification of grid values for approximating the posterior
step = 0.01
grid_rm = seq(from = -3, to =3, by = step)
grid_K = seq(from = 40, to = 60, by = step)
grid_theta = seq(from = 0, to =10, by = step)
grid_sig_2e = seq(from = 0.0001 , to =0.01, by = 0.00001)

4.2.3 Likelihood function

In the following code we define the likelihood function. Note that we have directly computed
the log-likelihood values to avoid truncation error.
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likelihood = function(data, param){
rm = param[1]
K = param[2]
theta = param[3]
sig_2e = param[4]

x = data[,1] # population size
y = data[,2] # per capita growth rates

log_lik = -n*log(sqrt(2*pi)) - (n/2)*log(sig_2e) - sum(((y-rm*(1-(x/K)^theta))^2/(2*sig_2e)))
return(exp(log_lik))

}

4.2.4 Calculation of Posterior distribution

First of all we have set 100000 as a number Markov Chain samples to be generated. Then we
have fixed the initial values of the parameters and defined the arrays for storing the posterior
values of the parameters in R as follows:

iter = 100000 # Length of the chain to be simulated
post_rm = rep(NA, iter) # posterior values of r_m
post_K = rep(NA, iter) # posterior values of K
post_theta = rep(NA, iter) # posterior values of theta
post_sig_2e = rep(NA, iter) # posterior values of simga_2e

param = c(0.2, 40, 1, 0.02) # starting of the chain

# initialization of the chain
post_rm[1] = param[1]
post_K[1] = param[2]
post_theta[1] = param[3]
post_sig_2e[1] = param[4]

Next we carried out the Gibbs sampling and grid approximation of the posterior distribution.
At each Gibbs sampling step (outer loop), the conditional posterior has been approximated
by grid approximation (four inner loop for four parameters).

for(i in 2:iter){ # loop for iteration of Gibbs sampling
# section for rm
tmp_post_rm = numeric(length = length(grid_rm))
for(j in 1:length(grid_rm)){
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param = c(grid_rm[j], post_K[i-1], post_theta[i-1], post_sig_2e[i-1])
tmp_post_rm[j] = likelihood(data = data, param = param)*fun_prior_rm(grid_rm[j])

}
prob = tmp_post_rm/sum(tmp_post_rm)
post_rm[i] = sample(grid_rm, size = 1, prob = prob)

# section for K
tmp_post_K = numeric(length = length(grid_K))
for(j in 1:length(grid_K)){

param = c(post_rm[i], grid_K[j], post_theta[i-1], post_sig_2e[i-1])
tmp_post_K[j] = likelihood(data = data, param = param)*fun_prior_K(grid_K[j])
}

prob = tmp_post_K/sum(tmp_post_K)
post_K[i] = sample(grid_K, size = 1, prob = prob)

# section for theta
tmp_post_theta = numeric(length = length(grid_theta))
for(j in 1:length(grid_theta)){

param = c(post_rm[i], post_K[i], grid_theta[j], post_sig_2e[i-1])
tmp_post_theta[j] = likelihood(data = data, param = param)*fun_prior_theta(grid_theta[j])
}

prob = tmp_post_theta/sum(tmp_post_theta)

post_theta[i] = sample(grid_theta, size = 1, prob = prob)

# section for sig_2e
tmp_post_sig_2e = numeric(length = length(grid_sig_2e))
for(j in 1:length(grid_sig_2e)){

param = c(post_rm[i], post_K[i], post_theta[i], grid_sig_2e[j])
tmp_post_sig_2e[j] = likelihood(data = data, param = param)*fun_prior_sig_2e(grid_sig_2e[j])
}

prob = tmp_post_sig_2e/sum(tmp_post_sig_2e)
post_sig_2e[i] = sample(grid_sig_2e, size = 1, prob = prob)

} # loop ends for Gibbs iteration

By executing the above code, we have obtained the 1,00,000 sample values from the posterior
density of 𝑟𝑚, 𝐾, 𝜃, and 𝜎2

𝑒 . We stored them in the local directory on system for the further
analysis.
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post_param_vals = data.frame(post_rm,post_K,post_theta,post_sig_2e)
setwd("specify path here")
filename = paste0("output",seed, ".txt")
write.table(post_param_vals, file = filename, col.names = TRUE)

Trace plot is a key diagnostic tool used in Bayesian statistics to assess the behavior and
convergence of MCMC chains. So we have plotted the traceplot of posterior values obtained
using Grid and Gibbs approximation using following code:

filename = paste0("output",seed, ".txt")
post_vals = read.table(file = filename, header = TRUE)

#traceplot
par(mfrow=c(2,2))
plot(post_vals$post_rm, type = "l", main = bquote("Trace plot of"~ r[m]),col = "red")
plot(post_vals$post_K, type = "l", main = bquote("Trace plot of"~ K),col = "red")
plot(post_vals$post_theta, type = "l", main = bquote("Trace plot of"~ theta),col = "red")
plot(post_vals$post_sig_2e, type = "l", main = bquote("Trace plot of"~ sigma[e]^2),col = "red")

We have kept initial half i.e 50,000 sample values as a burn-in period for each parameter.
After the burn-in period from remaining 50,000 sample posterior values, using appropriate
step for thinning (using auto-correlation function, $acf) we have reduced the autocorrelation
between the successive samples to get reliable estimate of parameters. Next we have plot the
histogram of posterior distribution of all parameters using following code and depicted in the
Figure 4.2.

cut = 0.5 # burn-in chain (first 50,000 values as burn-in period)

# for rm
u = post_vals$post_rm[ceiling(iter*cut):iter] # after burn in period
index = seq(1,length(u), by = 20) # thining
post_rm_thinning = u[index] # values after thinning
acf(post_rm_thinning,main = bquote("acf of posterior "~rm)) # autocorrelation
post_interval_rm = quantile(post_rm_thinning, c(2.5, 97.5)/100) #credible interval for rm
hist(post_rm_thinning, probability = TRUE,main = bquote("Posterior of "~ r[m]),
xlab = expression(r[m]),col = "grey", breaks = 40)
arrows(post_interval_rm[1], 0, post_interval_rm[2], 0, lwd=3, angle = 90,col = "red", code = 1)
arrows(post_interval_rm[2], 0, post_interval_rm[1], 0, lwd=3, angle = 90,col = "red", code = 1)
legend("topright",legend = c("Credible Interval"),lwd = 3, col = "red",lty = 1,cex = 1, bty = "n")

# for K
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u = post_vals$post_K[ceiling(iter*cut):iter] # after burn in period
index = seq(1,length(u), by = 10) # thining
post_K_thinning = u[index] # values after thinning
acf(post_K_thinning,main = bquote("acf of posterior "~K)) # autocorrelation
post_interval_K = quantile(post_K_thinning, c(2.5, 97.5)/100) #credible interval for K
hist(post_K_thinning, probability = TRUE,main = bquote("Posterior of "~ K),
xlab = expression(K),col = "grey", breaks = 40)
arrows(post_interval_K[1], 0, post_interval_K[2], 0, lwd=3, angle = 90, col = "red", code = 1)
arrows(post_interval_K[2], 0, post_interval_K[1], 0, lwd=3, angle = 90, col = "red", code = 1)
legend("topright",legend = c("Credible Interval"),lwd = 3, col = "red",lty = 1,cex = 1, bty = "n")

# for theta
u = post_vals$post_theta[ceiling(iter*cut):iter] # after burn in period
index = seq(1,length(u), by = 20) # thining
post_theta_thinning = u[index] # values after thinning
acf(post_theta_thinning,main = bquote("acf of posterior "~theta)) # autocorrelation
post_interval_theta = quantile(post_theta_thinning, c(2.5, 97.5)/100) #credible interval for theta
hist(post_theta_thinning, probability = TRUE,main = bquote("Posterior of "~ theta),xlab = expression(theta),col = "grey", breaks = 40)
arrows(post_interval_theta[1], 0, post_interval_theta[2], 0, lwd=3, angle = 90, col = "red", code = 1)
arrows(post_interval_theta[2], 0, post_interval_theta[1], 0, lwd=3, angle = 90, col = "red", code = 1)
legend("topright",legend = c("Credible Interval"),lwd = 3, col = "red",lty = 1,cex = 1, bty = "n")

# for sigma_e^2
u = post_vals$post_sig_2e[ceiling(iter*cut):iter] # after burn in period
index = seq(1,length(u), by = 1) # thining
post_sig_2e_thinning = u[index] # values after thinning
acf(post_sig_2e_thinning,main = bquote("acf of posterior "~sigma[e]^2))
post_interval_sig_2e = quantile(post_sig_2e_thinning, c(2.5, 97.5)/100)
#credible interval for sig_2e
hist(post_sig_2e_thinning, probability = TRUE,main = bquote("Posterior of "~ sigma[e]^2),xlab = expression(sigma[e]^2),col = "grey", breaks = 40, ylim = c(0,800))
arrows(post_interval_sig_2e[1], 0, post_interval_sig_2e[2], 0, lwd=3, angle = 90, col = "red", code = 1)
arrows(post_interval_sig_2e[2], 0, post_interval_sig_2e[1], 0, lwd=3, angle = 90, col = "red", code = 1)
legend("topright",legend = c("Credible Interval"),lwd = 3, col = "red",lty = 1,cex = 1, bty = "n")

For 𝜎2
𝑒 , due to conjugacy the posterior density is predictable, but good approximation would

depend on the estimate of the shape parameter which involves other parameters. Here we
show what choice of the point estimate for 𝑟𝑚, 𝐾 and 𝜃 need to be used (Figure 4.2d) and we
observe that the posterior median values best approximate the posterior density function of
𝜎2

𝑒 .
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(a) (b)

(c) (d)

Figure 4.2: Posterior distribution of the parameters of theta-logistic growth equation. From
the histogram of 𝜎2

𝑒 , it is evident that posterior median is more appropriate choice
to obtain a point estimate of 𝑟𝑚, 𝐾 and 𝜃. Blue lines indicate the 95% of credible
intervals.
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5 Bayesian connection to Statistical
Regularization

First we outline the concepts of linear regression. We denote the response variable by 𝑌 and
the set of predictor variables by 𝑋1, 𝑋2, ⋯ , 𝑋𝑝, 𝑝 being the number of predictors which are also
synonymously written as explanatory variables, independent variables, covariates, regressors
etc. The true relationship between the response and the predictors can be approximated by a
regression function 𝑓 , so that the equation

𝑌 = 𝑓(𝑋1, 𝑋2, ⋯ , 𝑋𝑝) + 𝜖 (5.1)

is a valid statistical model for the population of interest. Usually, 𝑓 is a fixed but unknown
function of 𝑋1, 𝑋2, ⋯ , 𝑋𝑝 which represents the systematic variation of 𝑌 explained by the
predictors. The unexplained component, denoted by 𝜖, is assumed to be a random error
(independent of the predictors) with mean zero. This gives a measure of discrepancy of the
approximation by the function 𝑓 .
Under the multiple regression set up, 𝑓 is replaced by a linear function of the predictors,
represented as

𝑌 = 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑝𝑋𝑝 + 𝜖,

where 𝛽0 is the intercept term and 𝛽𝑗 gives the contributions of 𝑋𝑗 for 𝑗 = 1, ⋯ , 𝑛 in explaining
the variation of 𝑌 . For convenience, we adopt the matrix notation and represent the data set
up. We have the continuous response Y = (𝑦1, ⋯ , 𝑦𝑛)′ ∈ ℝ𝑛 and the 𝑛 data values (𝑥𝑖𝑗)

𝑛
𝑖=1

are available on each 𝑋𝑗, 𝑗 = 1, 2, ⋯ , 𝑝. The regression equation in matrix form written as

Y = X𝛽 + e (5.2)

where X is an 𝑛 × (𝑝 + 1) design matrix with entries in the first column being 1 (if intercept
included) otherwise it is 𝑛×𝑝 order matrix with 𝑥𝑖𝑗 denotes the 𝑖th observation corresponding
to the 𝑗th variable. 𝛽 be the vector of regression coefficients of order (𝑝 + 1) × 1 and e =
(𝑒1, 𝑒2, ⋯ , 𝑒𝑛)′ ∈ ℝ𝑛 is the vector of errors. By using the least squares theory, the residual sum
of squares,
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e′e =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝛽0 −
𝑝

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗)
2

= RSS(𝛽),

is minimized with respect to 𝛽. Solving the normal equations, the estimates of 𝛽 is obtained
as �̂� = (X′X)−1 X′Y. Using the notion of 𝑙2 − norm, one can write as

�̂� = argmin𝛽 (‖Y − X𝛽‖2
2) , (5.3)

where ‖u‖2
2 = ∑𝑛

𝑖=1 𝑢2
𝑖 for a vector u ∈ ℝ𝑛. �̂� is an unbiased and consistent estimator of 𝛽.

The normal equations for the above minimization problem is given by

(X′X)𝛽 = X′Y.

If (X′X) has determinant zero, then the unique solution for the system of equations can not be
obtained. If the matrix is ill-conditioned that is the determinant is very small, then variance
for estimated coefficients are very large making the estimates unreliable. This is a common
case in many real life data sets where high degree of correlation exits between two variables. If
any particular predictor can be closely approximated by a linear combination of two or more
other predictors, then also the matrix (X′X) is nearly singular. Such a situation is called
multicollinearity and must be taken care of before any modeling assignment.

To tackle the multicollinearity problem, various shrinkage methods have been proposed in the
literature. Ridge regression deals with solving the normal equations of the form

(X′X + 𝜆I) 𝛽 = X′Y,

where 𝜆 ≥ 0 is called the shrinkage parameter. Because of the additional parameter 𝜆 the
coefficient estimates �̂� has lower variance but they are no longer unbiased. Basically, instead of
minimizing the residual sum of squares, ridge regression minimizes a slightly different quantity,
given by RSS(𝛽) + 𝜆 ∑𝑝

𝑗=1 𝛽2
𝑗 . The coefficient estimates can be written using 𝑙2 − norm as

̂𝛽𝑅
𝜆 = argmin𝛽 (‖Y − X𝛽‖2

2 + 𝜆‖𝛽‖2
2) . (5.4)

The term 𝜆 ∑𝑝
𝑗=1 𝛽2

𝑗 , referred as shrinkage penalty, is small when 𝛽1, ⋯ , 𝛽𝑝 are close to zero.
For 𝜆 = 0, the procedure is equivalent to the ordinary least squares (OLS) regression. For
𝜆 → ∞, the influence of shrinkage penalty increases and the components of ̂𝛽𝑅

𝜆 will approach
zero and its successful implementation is guaranteed by the bias-variance tradeoff.

Model selection methods such as forward, backward and mixed selection give the model that
involves a subset of all the predictors. These techniques can be conveniently performed using
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R software for statistical computing. The packages ISLR (James et al. 2021), leaps (Fortran
code by Alan Miller 2024), MASS (Venables and Ripley 2002) can be used for this purpose and
different criteria such as 𝑅2, AIC etc. can be utilized for the model selection. Unlike these
methods, ridge regression includes all 𝑝 predictors in the model; the penalty term reduces
many coefficients to very small values, but will not set them exactly equal to zero. This is
challenging for interpretation of the results in high dimension when the number of predictors
is very large. This shortcoming is overcome by the method of lasso regression by minimizing
the quantity RSS(𝛽) + 𝜆 ∑𝑝

𝑗=1 |𝛽𝑗|, which considers an 𝑙1−norm penalty instead of 𝑙2−norm
penalty. Thus using 𝑙1 − norm notation, the coefficient estimates can be written as

̂𝛽𝐿
𝜆 = argmin𝛽 (‖Y − X𝛽‖2

2 + 𝜆‖𝛽‖1) (5.5)

where ‖u‖1 = ∑𝑛
𝑖=1 |𝑢𝑖| for a vector u ∈ ℝ𝑛. Because of the 𝑙1 penalty some of the coefficients

are forced to be equal to zero for large 𝜆. Thus, like the best subset selection methods,
lasso also provides variable selection method. More precisely the lasso regression falls between
best subset selection method and the ridge regression method and has some nice statistical
properties from both techniques.

Ridge regression has a close connection to Bayesian linear regression. Bayesian linear regression
assumes that the parameters 𝛽 and 𝜎2 (known) to be the random variables, while at the same
time considering X and Y as fixed. We shall show that if we assume the the prior distribution
for 𝛽 as follows: 𝛽1, 𝛽2, ⋯ , 𝛽𝑝 are independent and identically distributed according to a normal
distribution of mean zero and variance 𝑐, then the posterior distribution of 𝛽 is also normal
and the ridge regression estimate is both the mean and the mode for 𝛽 under this posterior
distribution. We start with the linear regression setting again so that, the exact calculations
follows naturally:

𝑌𝑖 = 𝛽0 +
𝑝

∑
𝑗=1

𝛽𝑗𝑋𝑖𝑗 + 𝜖𝑖, 𝑖 = 1, 2, ⋯ , 𝑛. (5.6)

𝜖𝑖 ∼ 𝒩(0, 𝜎2), 𝑖 = 1, 2, ⋯ , 𝑛, �̂� = ( ̂𝛽1, ⋯ , ̂𝛽𝑝)′, E𝛽�̂� = 𝛽, Var𝛽(�̂�) = 𝜎2(X′X)−1, where
̂𝛽 = (X′X)−1X′Y, Y = (𝑦1, 𝑦2, ⋯ , 𝑦𝑛)′. In matrix notation, we write it as

Y = 𝛽01𝑛 + X𝛽 + e,

where 1𝑛 is a vector of order 𝑛 × 1 whose each entry is equal to 1. Note that we do not have
any prior distribution on the intercept term 𝛽0. Since 𝛽𝑗’s (𝑗 = 1, 2, ⋯ , 𝑝) are independent
and identically distributed normal random variables with mean 0 and variance 𝑐, the the joint
probability density function can be easily written as a multivariate normal distribution as
follows:
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𝜋(𝛽) = ( 1√
2𝜋𝑐)

𝑝
𝑒− 𝛽′𝛽

2𝑐 , 𝛽 ∈ ℝ𝑝, (5.7)

and the marginal prior densities are given by 𝜋(𝛽𝑗) = 1√
2𝜋𝑐𝑒− 𝛽2

𝑗
2𝑐 , 𝑗 = 1, 2, ⋯ , 𝑛. Using a

Hierarchical Bayesian set up the regression model can be written as

𝑌𝑖|𝛽 ∼ 𝒩 (𝛽0 +
𝑝

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗, 𝜎2) , 𝑖 = 1, 2, ⋯ , 𝑛, independent,

𝛽 ∼ 𝜋(𝛽).

The posterior distribution of 𝛽 is given by,

𝜋(𝛽|𝑦) = 𝑓(𝛽, 𝑦)
𝑓Y(𝑦) = 𝑓(𝑦|𝛽)𝜋(𝛽)

𝑓Y(𝑦) ,

The marginal distribution of Y is given by,

𝑓Y(𝑦) = ∫
ℝ𝑝

𝑓(𝑦|𝛽)𝜋(𝛽)d𝛽 (5.8)

= ∫
ℝ𝑝

1
(
√

2𝜋𝜎)𝑛 𝑒− ∑𝑛
𝑖=1(𝑦𝑖−𝛽0−∑𝑝

𝑗=1 𝛽𝑗𝑥𝑖𝑗)
2

2𝜎2
1

(
√

2𝜋𝑐)𝑝 𝑒− ∑𝑝
𝑗=1 𝛽2

𝑗
2𝑐 d𝛽

= 1
(
√

2𝜋𝜎)𝑛
1

(
√

2𝜋𝑐)𝑝 ∫
ℝ𝑝

𝑒− 1
2 [ (𝑦−𝛽01𝑛−X𝛽)′(𝑦−𝛽01𝑛−X𝛽)

𝜎2 + 𝛽′𝛽
𝑐 ]d𝛽 (5.9)

Now consider the exponent part in the previous equation and simplify it,

2 × Exponent = (Y − 𝛽01𝑛 − X𝛽)′(Y − 𝛽01𝑛 − X𝛽)
𝜎2 + 𝛽′𝛽

𝑐 (5.10)

= (Y′ − 𝛽01′
𝑛 − 𝛽′X′)(Y − 𝛽01𝑛 − X𝛽)

𝜎2 + 𝛽′𝛽
𝑐

= Y′Y − 2𝛽01′
𝑛Y − 2𝛽′X′Y + 𝛽2

0 + 2𝛽′X′𝛽01𝑛 + 𝛽′X′X𝛽
𝜎2 + 𝛽′𝛽

𝑐
= Y′Y

𝜎2 − 2𝛽01′
𝑛Y

𝜎2 + 𝛽2
0

𝜎2 + 𝛽′ (X′X
𝜎2 + 1

𝑐 I𝑝) 𝛽 − 2𝛽′X′ ( Y
𝜎2 − 𝛽01𝑛

𝜎2 )(5.11)
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We write the above expression in the form (𝛽 − 𝜇)′Σ−1(𝛽 − 𝜇)+ constant containing term Y
and X′𝑠. To do that we utilize the following expression for the purpose of matching similar
terms:

(X − 𝜇)′Σ−1(X − 𝜇) = X′Σ−1X − 2X′Σ−1𝜇 + 𝜇′Σ−1𝜇.
Therefore by equation (5.8)

(Y − 𝛽01𝑛 − X𝛽)′(Y − 𝛽01𝑛 − X𝛽)
𝜎2 + 𝛽′𝛽

𝑐 (5.12)

= 𝛽′ (X′X
𝜎2 + 1

𝑐 I𝑝) 𝛽 − 2𝛽′ (X′X
𝜎2 + 1

𝑐 I𝑝) (X′X
𝜎2 + 1

𝑐 I𝑝)
−1

(X′Y
𝜎2 − X′𝛽01𝑛

𝜎2 ) +

[(X′X
𝜎2 + 1

𝑐 I𝑝)
−1

(X′Y
𝜎2 − X′𝛽01𝑛

𝜎2 )]
′

(X′X
𝜎2 + 1

𝑐 I𝑝)

[(X′X
𝜎2 + 1

𝑐 I𝑝)
−1

(X′Y
𝜎2 − X′𝛽01𝑛

𝜎2 )]

− [(X′X
𝜎2 + 1

𝑐 I𝑝)
−1

(X′Y
𝜎2 − X′𝛽01𝑛

𝜎2 )]
′

(X′X
𝜎2 + 1

𝑐 I𝑝)

[(X′X
𝜎2 + 1

𝑐 I𝑝)
−1

(X′Y
𝜎2 − X′𝛽01𝑛

𝜎2 )]

+Y′Y
𝜎2 − 2𝛽01′

𝑛Y
𝜎2 + 𝛽2

0
𝜎2 . (5.13)

Now, let

Σ−1 = 𝜎2 (X′X + 𝜎2

𝑐 I𝑝) and 𝜇 = ΣX′ (Y − 𝛽01𝑛) ,

then the Exponent becomes,

2 × Exponent = 𝛽′Σ−1𝛽 − 2𝛽′Σ−1𝜇 + 𝜇′Σ−1𝜇 − 𝜇′Σ−1𝜇 + Y′Y
𝜎2 − 2𝛽01′

𝑛Y
𝜎2 + 𝛽2

0
𝜎2

= (𝛽 − 𝜇)′Σ−1(𝛽 − 𝜇) − 𝜇′Σ−1𝜇 + Y′Y
𝜎2 − 2𝛽01′

𝑛Y
𝜎2 + 𝛽2

0
𝜎2 . (5.14)

Then equation (5.8) becomes,

𝑓Y(𝑦) = (
√

2𝜋)𝑝 |Σ|𝑝/2 1
(
√

2𝜋𝜎)𝑛
1

(
√

2𝜋𝑐)𝑝 𝑒− Y′Y
2𝜎2 𝑒

𝛽01′𝑛Y
2𝜎2 𝑒

𝛽2
0

2𝜎2 𝑒 𝜇′Σ−1𝜇
2 ∫

ℝ𝑝

1
(
√

2𝜋)𝑝
1

|Σ|𝑝/2 𝑒− 1
2 (𝛽−𝜇)′Σ−1(𝛽−𝜇)d𝛽

= (
√

2𝜋)𝑝 |Σ|𝑝/2 1
(
√

2𝜋𝜎)𝑛
1

(
√

2𝜋𝑐)𝑝 𝑒− Y′Y
2𝜎2 𝑒

𝛽01′𝑛Y
2𝜎2 𝑒

𝛽2
0

2𝜎2 𝑒 𝜇′Σ−1𝜇
2 . (5.15)
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Note that the integrand is the density function of MVN𝑝(𝜇, Σ), hence integral out to be 1,
where,

𝜇 = (X′X
𝜎2 + 1

𝑐 I𝑝)
−1

X′ (Y − 𝛽01𝑛
𝜎2 ) and Σ = 𝜎2 (X′X + 𝜎2

𝑐 I𝑝)
−1

.

The posterior distribution of 𝛽 is,

𝜙(𝛽|𝑦) = 𝑓(𝛽, 𝑦)
𝑓Y(𝑦)

= 𝑓(𝑦|𝛽)𝜋(𝛽)
𝑓Y(𝑦)

=
1

(
√

2𝜋𝜎)𝑛 𝑒− (Y−𝛽01𝑛−X𝛽)′(Y−𝛽01𝑛−X𝛽)
𝜎2 + 𝛽′𝛽

𝑐 1
(
√

2𝜋𝑐)𝑝 𝑒− 𝛽′𝛽
2𝑐

(
√

2𝜋)𝑝 |Σ| 𝑝
2 1

(
√

2𝜋𝜎)𝑛
1

(
√

2𝜋𝑐)𝑝 𝑒− Y′Y
2𝜎2 𝑒

𝛽01𝑛Y
2𝜎2 𝑒

𝛽2
0

2𝜎2 𝑒 𝜇′Σ−1𝜇
2

= 1
(
√

2𝜋)𝑝
1

|Σ|𝑝/2 𝑒− 1
2 (𝛽−𝜇)′Σ−1(𝛽−𝜇).

So the posterior mean of 𝛽 is given by

E(𝛽|𝑦) = �̂�𝐵

= (X′X + 𝜎2

𝑐 I𝑝)
−1

X′(Y − 𝛽01𝑛)

The main utility of ridge regression is to choose the predictors. We can start with the regression
model in the following form:

ỹ = X𝛽 + 𝜖

where ỹ = Y − ̄𝑦1𝑛 and ̄𝑦 = 1
𝑛 ∑𝑛

𝑖=1 𝑦𝑖. Then

�̂�𝐵 = (X′X + 𝜎2

𝑐 I𝑝)
−1

X′ỹ.
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6 Bayesian Model selection using Reversible
Jump Markov Chain Monte
Carlo(RJMCMC)

Suppose we have data and want to do further analysis like inference and prediction using this
data. First we will look for the mathematical model which will fit best for this data. If we
believe that data is from any 𝑀1, 𝑀2, ⋯ , 𝑀𝑘 models, then the problem boils down to model
selection. For model selection, many statistical and machine learning techniques are present in
literature. Here we shall discuss the Reversible Jump Markov Chain Monte Carlo(RJMCMC)
under the Bayesian framework and implement it in R step-by-step for one simple example.

6.1 Demonstration using Cubic Regression example in R:

First we installed the needed packages and then simulate the data for understanding RJMCMC
algorithm.

library(R2jags)
library(rjmcmc)
library(madness)
set.seed(1)
x = seq(-1, 1, length.out = 30)
y = 2*x^3+ rnorm(n = length(x), mean = 0, sd = 0.1)
plot(x, y, pch = 19, col = "red")
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We simulated a data set {(𝑥, 𝑦)}𝑛
𝑖=1. So we have a data set and for instance assume that we

don’t know the true model from which this data is generated. For finding the best fit model,
we consider the data is from any one of the following three models;

𝑦𝑖 = 𝑏0 + 𝑏1𝑥𝑖 + 𝜖𝑖 (𝑀1)

𝑦𝑖 = 𝑏0 + 𝑏1𝑥𝑖 + 𝑏2𝑥2
𝑖 + 𝜖𝑖 (𝑀2)

and

𝑦𝑖 = 𝑏0 + 𝑏1𝑥𝑖 + 𝑏2𝑥2
𝑖 + 𝑏3𝑥3

𝑖 + 𝜖𝑖 (𝑀3)

where we assume the residuals 𝜖′
𝑖𝑠 are uncorrelated, follows standard normal distribution with

constant variance 𝜎2 and consider same residual variance 𝜎2 for all 𝑀1, 𝑀2 and 𝑀3. Conse-
quence of this assumption is that variables 𝑦′

𝑖𝑠 are independent given 𝑥𝑖. Model 𝑀1 have three
parameters 𝜃1 = (𝑏0, 𝑏1, 𝜎2), Model 𝑀2 have four parameters 𝜃2 = (𝑏0, 𝑏1, 𝑏2, 𝜎2) and Model
𝑀3 have five parameters 𝜃3 = (𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝜎2). So we model the observations 𝑦𝑖 as normally
distributed as;
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𝑦𝑖 ∼ 𝒩(𝑏0 + 𝑏1𝑥𝑖, 1/𝜏), (𝑀∗
1)

𝑦𝑖 ∼ 𝒩(𝑏0 + 𝑏1𝑥𝑖 + 𝑏2𝑥2
𝑖 , 1/𝜏), (𝑀∗

2)

and

𝑦𝑖 ∼ 𝒩(𝑏0 + 𝑏1𝑥𝑖 + 𝑏2𝑥2
𝑖 + 𝑏3𝑥3

𝑖 , 1/𝜏), (𝑀∗
3)

where 𝜏 = 1
𝜎2 .

In R, we write simple functions for defining mean corresponds to each of three models:

fun_M1 = function(x, b0, b1){
b0 + b1 * x

}

fun_M2 = function(x, b0, b1, b2){
b0 + b1*x + b2*x^2

}

fun_M3 = function(x, b0, b1, b2, b3){
b0 + b1*x + b2*x^2 + b3*x^3

}

Log-likelihood functions corresponding to Model 𝑀1, 𝑀2 and 𝑀3 are as follows;

𝐿1 = log(
𝑛

∏
𝑖=1

𝑝(𝑦𝑖|𝑥𝑖; 𝑏0, 𝑏1, 𝜎2))

= log(
𝑛

∏
𝑖=𝑛

1√
2𝜋𝜎 exp{ − 1

2𝜎2 (𝑦𝑖 − (𝑏0 + 𝑏1𝑥𝑖))2}) (6.1)

𝐿2 = log(
𝑛

∏
𝑖=1

𝑝(𝑦𝑖|𝑥𝑖; 𝑏0, 𝑏1, 𝑏2, 𝜎2))

= log(
𝑛

∏
𝑖=𝑛

1√
2𝜋𝜎 exp{ − 1

2𝜎2 (𝑦𝑖 − (𝑏0 + 𝑏1𝑥𝑖 + 𝑏2𝑥2
𝑖 ))2}) (6.2)
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𝐿3 = log(
𝑛

∏
𝑖=1

𝑝(𝑦𝑖|𝑥𝑖; 𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝜎2))

= log(
𝑛

∏
𝑖=𝑛

1√
2𝜋𝜎 exp{ − 1

2𝜎2 (𝑦𝑖 − (𝑏0 + 𝑏1𝑥𝑖 + 𝑏2𝑥2
𝑖 + 𝑏3𝑥3

𝑖 ))2}) (6.3)

Here,we define a common parameter vector 𝜃 = (𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝜏) for all the three models 𝑀∗
1 , 𝑀∗

2
and 𝑀∗

3 and write the log-likelihood functions in terms of 𝜃 in R as follows;

L1 = function(theta){
sum(dnorm(y, mean = fun_M1(x, theta[1], theta[2]),

sd = 1/sqrt(theta[5]), log = TRUE))
}

L2 = function(theta){
sum(dnorm(y, mean = fun_M2(x, theta[1], theta[2], theta[3]),

sd = 1/sqrt(theta[5]), log = TRUE))
}

L3 = function(theta){
sum(dnorm(y, mean = fun_M3(x, theta[1], theta[2], theta[3], theta[4]),

sd = 1/sqrt(theta[5]), log = TRUE))
}

For selection of the best model, we compute the posterior model probabilities, whose ratios is
given by,

𝑝(𝑀𝑖|data)
𝑝(𝑀𝑗|data) = 𝐵𝑖𝑗

𝑝(𝑀𝑖)
𝑝(𝑀𝑗)

, (6.4)

where 𝑝(𝑀𝑘)′𝑠 are model prior probabilities with 𝑝(𝑀1)+𝑝(𝑀2)+𝑝(𝑀3) = 1 and Bayes factor
𝐵𝑖𝑗 is the ratio of the marginal likelihood of 𝑀𝑖 and 𝑀𝑗. Large value 𝐵𝑖𝑗 indicates stronger
evidence for model 𝑀𝑖 against model 𝑀𝑗. For this purpose, we used the (give reference
of Barker and Link(2013)) suggested version of RJMCMC algorithm which is implemented
via Gibbs sampling. This version of RJMCMC algorithm is based on the introduction of a
universal parameter(𝜓), where

dim(𝜓) ≥ max{dim(𝜃𝑘)}, 𝑘 = 1, 2, 3.

We take vector 𝜓 = (𝜓1, 𝜓2, 𝜓3, 𝜓4, 𝜓5) of dimension 5. Calculation of posterior model proba-
bilities requires a bijection map and its inverse map specified between parameter space 𝜃𝑖 of
each model and universal parameter 𝜓. For defining the one-to-one correspondence using bijec-
tion map, there is need to match the dimensions of 𝜓 and model parameter space 𝜃𝑖. Hence, we
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define augmenting variables 𝑢1 = (𝑢11, 𝑢12) and 𝑢2 such that dim((𝜃1, 𝑢1)) = dim((𝜃2, 𝑢2)) =
dim(𝜃3) = dim(𝜓). Three bijection maps and their inverse map is needed for implementation
of RJMCMC algorithm. Graphical representation of transitions between parameter spaces
and universal parameter 𝜓 using bijection map and their inverse map is depicted in following
figure;

We consider the augmenting variables 𝑢11, 𝑢12 and 𝑢2 are independently follow 𝒩(0, 1). For
all the models 𝑀1, 𝑀2 and 𝑀3, we take the bijection map between universal parameter 𝜓 and
model parameter space after augmenting using the augmenting variables as identity map. In
R these maps are defined as;

g1 = function(psi){
return(theta = psi)

}
ginv1 = function(theta){
return(psi = theta)

}

g2 = function(psi){
return(theta = psi)

}
ginv2 = function(theta){
return(psi = theta)

}

g3 = function(psi){
return(theta = psi)

}
ginv3 = function(theta){
return(psi = theta)

}
#

Next, we have to define the prior distributions. We used the following prior distributions;
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For 𝑀1: For 𝑀2: For 𝑀2:
𝑏0 ∼ 𝒩(0, 103) 𝑏0 ∼ 𝒩(0, 103) 𝑏0 ∼ 𝒩(0, 103)
𝑏1 ∼ 𝒩(0, 103) 𝑏1 ∼ 𝒩(0, 103) 𝑏1 ∼ 𝒩(0, 103)
𝑢11 ∼ 𝒩(0, 1) 𝑏2 ∼ 𝒩(0, 103) 𝑏2 ∼ 𝒩(0, 103)
𝑢12 ∼ 𝒩(0, 1) 𝑢2 ∼ 𝒩(0, 1) 𝑏3 ∼ 𝒩(0, 103)

𝜏 ∼ 𝒢(0.01, 0.01) 𝜏 ∼ 𝒢(0.01, 0.01) 𝜏 ∼ 𝒢(0.01, 0.01)
(6.5)

Here, by considering parameters are independent, we defined log-prior functions for parameter
space of all the three models in R as;

prior_M1 = function(theta){
sum(dnorm(theta[1:2], mean = 0, sd = 1/sqrt(c(1e-3, 1e-3)), log = TRUE))
+ sum(dnorm(theta[3:4], mean = 0, sd = sigma, log = TRUE))
+ dgamma(theta[5], 0.01, 0.01, log = TRUE)

}

prior_M2 = function(theta){
sum(dnorm(theta[1:3], mean = 0, sd = 1/sqrt(c(1e-3, 1e-3, 1e-3)), log = TRUE))
+ dnorm(theta[4], mean = 0, sd = sigma, log = TRUE)
+ dgamma(theta[5], 0.01, 0.01, log = TRUE)

}

prior_M3 = function(theta){
sum(dnorm(theta[1:4], mean = 0, sd = 1/sqrt(c(1e-3, 1e-3, 1e-3, 1e-3)), log = TRUE))
+ dgamma(theta[5], 0.01, 0.01, log = TRUE)

}

For proceeding further towards model selection, we need a posterior distribution of each model
parameter for all the models. So for this purpose, we use JAGS function from package R2jags.
Next we define each models using JAGS notation. We have used the function in R to write each
of the model into a separate text file that can be called by R2jags.

cat("model{
for(i in 1:n){

y[i] ~ dnorm(b0 + b1*x[i], tau)
}
b0 ~ dnorm(0, 1e-3)
b1 ~ dnorm(0, 1e-3)
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b2 ~ dnorm(0, 1/sigma^2)
b3 ~ dnorm(0, 1/sigma^2)
tau ~ dgamma(0.01, 0.01)

}", file = "M1.txt")

cat("model{
for(i in 1:n){

y[i] ~ dnorm(b0 + b1*x[i] + b2*x[i]^2, tau)
}
b0 ~ dnorm(0, 1e-3)
b1 ~ dnorm(0, 1e-3)
b2 ~ dnorm(0, 1e-3)
b3 ~ dnorm(0, 1/sigma^2)
tau ~ dgamma(0.01, 0.01)

}", file = "M2.txt")

cat("model{
for(i in 1:n){

y[i] ~ dnorm(b0 + b1*x[i] + b2*x[i]^2 + b3*x[i]^3, tau)
}
b0 ~ dnorm(0, 1e-3)
b1 ~ dnorm(0, 1e-3)
b2 ~ dnorm(0, 1e-3)
b3 ~ dnorm(0, 1e-3)
tau ~ dgamma(0.01, 0.01)

}", file = "M3.txt")

Now, we sample the posterior draws for each of the model parameters corresponding to each
of the models by setting the initial value equal to 1 for all the parameters.

library(R2jags)
inits = function(){
list(b0 = 1, b1 = 1, b2 = 1, b3 = 1, tau = 1)

}

params = c("b0", "b1", "b2", "b3", "tau")
jagsfit_M1 = jags(data = c('y', 'x', 'n', 'sigma'), inits, params,

n.iter = 1e3, model.file = "M1.txt",
n.chains = 3, n.burnin = 0, n.thin = 1)

Compiling model graph
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Resolving undeclared variables
Allocating nodes

Graph information:
Observed stochastic nodes: 30
Unobserved stochastic nodes: 5
Total graph size: 134

Initializing model

fit_M1 = as.mcmc(jagsfit_M1)

jagsfit_M2 = jags(data = c('y', 'x', 'n', 'sigma'), inits, params,
n.iter = 1e3, model.file = "M2.txt",
n.chains = 3, n.burnin = 0, n.thin = 1)

Compiling model graph
Resolving undeclared variables
Allocating nodes

Graph information:
Observed stochastic nodes: 30
Unobserved stochastic nodes: 5
Total graph size: 178

Initializing model

fit_M2 = as.mcmc(jagsfit_M2)

jagsfit_M3 = jags(data = c('y', 'x', 'n'), inits, params,
n.iter = 1e3, model.file = "M3.txt",
n.chains = 3, n.burnin = 0, n.thin = 1)

Compiling model graph
Resolving undeclared variables
Allocating nodes

Graph information:
Observed stochastic nodes: 30
Unobserved stochastic nodes: 5
Total graph size: 236

Initializing model
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fit_M3 = as.mcmc(jagsfit_M3)

C1 = as.matrix(fit_M1)
C2 = as.matrix(fit_M2)
C3 = as.matrix(fit_M3)

The variables 𝐶1, 𝐶2 and 𝐶3 contains 3000 posterior values for each of the parameters of the
three models. For checking the convergence of the posterior distribution, we use the Gelman-
Rubin convergence diagnostic. In R, we carried out this using gelman.diag() function from
coda package.

gelman.diag(fit_M1)

Potential scale reduction factors:

Point est. Upper C.I.
b0 1.00 1.02
b1 1.00 1.00
b2 1.00 1.00
b3 1.01 1.02
deviance 1.01 1.01
tau 1.00 1.00

Multivariate psrf

1.01

gelman.diag(fit_M2)

Potential scale reduction factors:

Point est. Upper C.I.
b0 1.00 1.01
b1 1.00 1.01
b2 1.00 1.01
b3 1.00 1.00
deviance 1.01 1.02
tau 1.00 1.00

Multivariate psrf

1
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gelman.diag(fit_M3)

Potential scale reduction factors:

Point est. Upper C.I.
b0 1 1.00
b1 1 1.00
b2 1 1.00
b3 1 1.00
deviance 1 1.01
tau 1 1.00

Multivariate psrf

1

gelman.plot(fit_M1)
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gelman.plot(fit_M2)
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gelman.plot(fit_M3)
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Potential scale reduction factors are closed to 1, hence the convergence is approached. It can
be cleared from the above Gelman-Rubin brooks plots that after which number of iterations
the convergence starts. Next, we required the function for random sampling from the joint
posterior distribution of parameters. So, we define three functions namely draw1, draw2 and
draw3 corresponding to 𝑀1, 𝑀2 and 𝑀3 respectively. These three sampler functions randomly
sample from joint posterior distribution which are stored in matrices 𝐶1, 𝐶2 and 𝐶3.

draw1 = function(){
C1[sample(dim(C1)[1], 1, replace = TRUE),
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-which(colnames(C1) == "deviance")]
}

draw2 = function(){
C2[sample(dim(C2)[1], 1, replace = TRUE),

-which(colnames(C2) == "deviance")]
}

draw3 = function(){
C3[sample(dim(C3)[1], 1, replace = TRUE),

-which(colnames(C3) == "deviance")]
}

Finally, we are now ready to call rjmcmcpost() function. For this application, we set equal
prior model probabilities, each equal to 1/3.

post_M = rjmcmcpost(post.draw = list(draw1, draw2, draw3),
g = list(g1, g2, g3), ginv = list(ginv1, ginv2, ginv3),
likelihood = list(L1, L2, L3), TM.thin = 10,
param.prior = list(prior_M1, prior_M2, prior_M3),
model.prior = c(1/3, 1/3, 1/3), chainlength = 1e3)

We get four outputs from rjmcmcpost function namely transition matrix, posterior model
probabilities, Bayes factors and second eigenvalue.

print(post_M)

Transition Matrix:
[,1] [,2] [,3]

[1,] 8.667098e-01 8.242734e-02 0.05086288
[2,] 3.836209e-01 4.283610e-01 0.18801803
[3,] 3.608974e-180 1.815550e-179 1.00000000

Posterior Model Probabilities:
[1] 2.499851e-15 6.409876e-16 1.000000e+00

Bayes Factors:
[,1] [,2] [,3]

[1,] 1.000000e+00 3.900000e+00 2.499851e-15
[2,] 2.564103e-01 1.000000e+00 6.409876e-16
[3,] 4.000238e+14 1.560093e+15 1.000000e+00
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Second Eigenvalue:
[1] 0.9297734

par(mfrow=c(1,1))
par(mar = c(10, 4, 4, 2) + 0.5)
barplot(height = post_M$result$`Posterior Model Probabilities`, # A vector of heights

names.arg = c("M1:linear", "M2:Quadratic", "M3:Cubic"), # A vector of names
main = "Posterior Model probabilities",
ylab = "Probability", col = 1:3, las = 2, cex.names = 0.9)

M
1:

lin
ea

r

M
2:

Q
ua

dr
at

ic

M
3:

C
ub

ic

Posterior Model probabilities

P
ro

ba
bi

lit
y

0.0
0.4
0.8

matplot(post_M$progress$prb, type = "l", lwd = 2, col = 1:3, ylab = "posterior model probability")
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From the result of RJMCMC, we get 𝑀3 as a best fit model to the data with the posterior
model probability equal to 1. Second eigenvalue of the transition matrix was checked for the
rate of convergence.

We fit all the three model curve using posterior median as a parameters estimate as;

plot(x,y, col = "red", lwd = 2, pch = 19)
curve(median(C3[,1])+ median(C3[,2])*x + median(C3[,3])*x^2 + median(C3[,4])*x^3,

add = TRUE, col = 4, lwd = 2)
curve(median(C2[,1])+ median(C2[,2])*x + median(C2[,3])*x^2, add = TRUE, col = 3, lwd = 2)
curve(median(C1[,1])+ median(C2[,2])*x, add = TRUE, col = 2, lwd = 2)
legend("topleft", legend = c(expression(M[1]), expression(M[2]), expression(M[3])),

col = 2:4, lwd = c(2,2,2), bty = "n")
B21 = post_M$result$`Bayes Factors`[2,1]
B31 = post_M$result$`Bayes Factors`[3,1]
legend("bottomright", legend = c(expression(paste(B[21], " = ",

0.080)),expression(paste(B[31], " = ", 3065) ) ), bty = "n")
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Our true model is cubic in predictor variable. From the above plot it is clear that fitted curve
corresponding to 𝑀3 which is also cubic in predictor variable is well fitted to the data. So,
RJMCMC gave us the desire results regarding the model selection. Next, we want to obtain
the posterior predictive distribution of 𝑦, 𝑓(𝑦∗|𝑑𝑎𝑡𝑎, 𝑀3). We aim to simulate parameter
values from the joint posterior distribution under model 𝑀3. Then we simulate y from the
𝑓(𝑦∗|𝑑𝑎𝑡𝑎, 𝑀3) at each 𝑥 values. So basically, we will get a distribution of 𝑦 at given 𝑥 value.
We can compute 95% non-parametric Confidence interval(CI) for 𝑦 given 𝑥-values, these will
give us 95% posterior predictive interval for y. We calculate 95% credible interval of Model
𝑀3 parameters namely 𝑏0, 𝑏1, 𝑏2 and 𝑏4 using quantile() function in R as;

quantile(C3[,1], c(2.5, 97.5)/100)

2.5% 97.5%
-0.02853006 0.08655851

quantile(C3[,2], c(2.5, 97.5)/100)

2.5% 97.5%
-0.1720214 0.1211914
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quantile(C3[,3], c(2.5, 97.5)/100)

2.5% 97.5%
-0.17116305 0.05812098

quantile(C3[,4], c(2.5, 97.5)/100)

2.5% 97.5%
1.806259 2.229217

Since, the posterior intervals of 𝑏0, 𝑏1, 𝑏2 contains zero, hence, we consider these parameters
are insignificant and hence to simulate the posterior samples from 𝑓(𝑦|𝑑𝑎𝑡𝑎, 𝑀), we consider
𝑏0 = 𝑏1 = 𝑏2 = 0 and simulate 𝑏3 from the kernel density estimate of posterior density of 𝑏3.
Essentially, the problem boils down to sampling from univariate posterior density function. For
this purpose we use simukde() function from R and use Cauchy density as a support density
for accept-reject algorithm. The reason behind the use of Cauchy density is, it is heavy tailed
density function, so help us to increase the efficiency of algorithm.

library(simukde)
x_new = seq(-1, 1, length.out = 20)
nsim = 25
pred_y = matrix(data = NA, nrow = length(x_new), ncol = 2)
sim_y = matrix(data = NA, nrow = nsim, ncol = length(x_new))

for (j in 1:length(x_new)) {
sim_b = simulate_kde(x = C3[,4], n = nsim, distr = "cauchy")$random.values
sim_tau = simulate_kde(x = C3[,6], n = nsim, distr = "cauchy")$random.values
for(i in 1:nsim){

sim_y[i,j] = fun_M3(x_new[j], 0, 0, 0, sim_b[j]) + rnorm(1, mean = 0, sd = 1/sqrt(sim_tau[i]))
}

}

plot(x, y, pch = 19, col = "red")
lower_CI = numeric(length = length(x_new))
upper_CI = numeric(length = length(x_new))
for(i in 1:length(x_new)){
lower_CI[i] = quantile(sim_y[,i], 0.025)
upper_CI[i] = quantile(sim_y[,i], 0.975)

}
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lines(x_new, lower_CI, type = "l", lty = 3, lwd = 3, col = "blue")
lines(x_new, upper_CI, type = "l", lty = 3, lwd = 3, col = "blue")
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7 Conclusion

This document serves as a comprehensive guide for students and educators, aiming to foster a
solid foundation in Bayesian computation without relying on pre-built packages. By encour-
aging learning from scratch, the material ensures that students grasp the underlying principles
and mechanics of Bayesian methods, which enhances the teaching experience in a classroom
setting.

The comparison of Maximum Likelihood Estimation (MLE) and Bayesian estimators through
simulation studies in the second chapter for various examples helps students understand how
well an estimator performs by accounting for both the bias (accuracy) and the variance (con-
sistency). The simulations provide practical experience, allowing students to compare the
estimators and deepen their understanding of statistical inference beyond just theory.

Through Bayesian regression, students gain a deeper understanding of how to incorporate
prior beliefs with data and carry out the inference process. Additionally, the emphasis on eco-
logical modeling in this document allows learners to connect theory with real-world issues. By
integrating ecological assumptions with simulation-based learning, students better understand
how to apply Bayesian methods to address complex environmental challenges, underscoring
the significance of ecological assumptions in model development.

In conclusion, this document is designed to enrich classroom teaching and provide students
with a robust foundation in Bayesian methods, ecological problem-solving, and the nuances of
simulation studies. The goal is to cultivate a deep, conceptual understanding of these topics
while reinforcing practical application through problem-solving exercises.

This document is not in its final format. We will update it regularly to provide a more polished
version. Please check for updates and additional chapters.
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